Permutazioni bilaterali

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
giobimbo
Livello 5
Livello 5
Messaggi: 311
Iscritto il: sab nov 19, 2005 5:14 pm
Località: Biella

Permutazioni bilaterali

Messaggio da giobimbo »

Dato n numero pari sia Pn una permutazione (a1,a2,..,an) dei numeri da 1 a n, e sia P’n la sequenza ottenuta aggiungendo a Pn il suo primo elemento, ovvero P’n=(a1,a2,…,an,a1).
Da essa ricaviamo la sequenza P’’n=(b1,b2,…,bn) delle differenze (modulo n) di due elementi successivi di P’n, quindi:
b1=a1-a2, b2=a2-a3, …,bn=an-a1 (tutte modulo n).

Se P’’n è tale che la sua metà destra contiene numeri tutti diversi ed è speculare alla sua metà sinistra diremo che Pn è “bilaterale”.
Per esempio, se n=6 allora deve essere P’’6=(b1, b2, b3, b4=b3, b5=b2, b6=b1)

Adesso:
Problema 1 (facile). Trovare una P12 bilaterale
Problema 2 (meno facile). Trovare una P16 bilaterale.

Quelo
Livello 7
Livello 7
Messaggi: 716
Iscritto il: ven giu 16, 2006 3:34 pm

Re: Permutazioni bilaterali

Messaggio da Quelo »

Per ottenere il risultato desiderato dobbiamo disporre i numeri in modo che le differenze siano diverse tra loro e speculari
Scegliamo un numero dell'insieme Pn da porre sia all'inizio che alla fine di P'n, i restanti numeri (che sono in quantità dispari) verranno accoppiati in modo che diano sempre la stessa somma
Avanzerà un numero.
A questo punto disponiamo le coppie all'interno di P'n partendo dagli estremi per arrivare al numero centrale che sarà quello singolo
Dobbiamo prestare attenzione a che tutte le differenze mod n siano diverse

Facciamo un esempio con n = 6
Scelgo 1 come numero esterno, i restanti 5 numeri hanno somma 20, cioè 8 x 2 + 4
Le coppie saranno pertanto 2-6 e 3-5, 4 numero singolo
Parto con il 2 a sinistra (diffrenza 5) e il 6 a destra (differenza 5)
Non posso mettere il 3 a sinistra perché la differenza sarebbe di nuovo 5, quindi metto il 5 (differenza 3)
Il 4 al centro (differenza 1)
Pn = (1, 2, 5, 4, 3, 6); P''n = [5, 3, 1, 1, 3, 5]

Con lo stesso metodo ricavo una P12 o una P16

Pn = (1, 2, 4, 8, 3, 9, 7, 5, 11, 6, 10, 12); P''n = [11, 10, 8, 5, 6, 2, 2, 6, 5, 8, 10, 11]

Pn = (1, 2, 4, 8, 5, 11, 6, 13, 9, 5, 12, 7, 13, 10, 14, 16); P''n = [15, 14, 12, 3, 10, 5, 9, 4, 4, 9, 5, 10, 3, 12, 14, 15]

o una P20

Pn = (1, 2, 4, 8, 13, 5, 3, 6, 15, 12, 11, 10, 7, 16, 19, 17, 9, 14, 18, 20); P''n = [19, 18, 16, 15, 8, 2, 17, 11, 3, 1, 1, 3, 11, 17, 2, 8, 15, 16, 18, 19]

SE&O
[Sergio] / $17$

Bruno
Livello 10
Livello 10
Messaggi: 1899
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Permutazioni bilaterali

Messaggio da Bruno »

Eccellente :D
(Bruno)

...........................
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
{Biagio Marin}
................................................................
Meglio soluzioni sbagliate che risposte esatte.
{Rudi Mathematici}

giobimbo
Livello 5
Livello 5
Messaggi: 311
Iscritto il: sab nov 19, 2005 5:14 pm
Località: Biella

Re: Permutazioni bilaterali

Messaggio da giobimbo »

Molto bene Quelo, tutto corretto, giuste le soluzioni, bravo.
Io sono partito dall’osservazione che, prendendo ad esempio la tua P12, come spiego solo graficamente con la figura sotto, la somma delle coppie con lo stesso colore è sempre la stessa. Tale figura penso spieghi anche il perché dell’aggettivo bilaterale (come per il corpo umano) riferito a Pn.
Permutazioni bilaterali.png
Permutazioni bilaterali.png (42.46 KiB) Visto 413 volte

Rispondi