Pagina 1 di 1

La foresta triangolare

Inviato: gio mar 21, 2019 7:41 pm
da Tesspi
Di seguito il testo del problema "La forma di una foresta". Potrebbe qualcuno di voi dettagliarmi il procedimento risolutivo?
Con gratitudine
Saluti a tutti :)

La forma di una foresta è rappresentata in figura dal triangolo
ABC nel quale AB = 2AC e l’angolo di vertice A misura 120°.
Un sentiero rettilineo AM attraversa la foresta lungo la bisettrice dell’angolo A.
Il sentiero AM ha una lunghezza di 2019 metri.
Qual è la lunghezza del lato BC? (Scrivete 2,646 al posto di
√7 e approssimate la risposta al metro più vicino).

Re: La foresta triangolare

Inviato: ven mar 22, 2019 3:42 pm
da Bruno
Buon pomeriggio, Tania :D

Ho trovato uno scampolo di tempo nella pausa del pranzo e ho messo mano al tuo quesito.

Ti riporto la mia risoluzione, la scrivo così come l'ho scarabocchiata :wink:

Tesspi.jpg
Tesspi.jpg (12.66 KiB) Visto 315 volte


Per il noto teorema della bisettrice, se $\small AB$ è il doppio di $\small AC$, allora $\small BM$ è il doppio di $\small MC$, di conseguenza pure $\small BE$ è il doppio di $\small EF$.

Vediamo in che modo può esserci utile questo fatto.

Ragionando sui triangoli rettangoli simili con le ipotenuse su $\small BC$:

$\small BE\, :\, EM\, =\, BF\, :\, CF$

cioè:

2·$\small EF$ : ($\small AC$-2019) = 3·$\small EF$ : $\frac{AC}{2}$

da cui si ottiene:

$\small AC \, = \,{\large \frac{3\cdot 2019}{2}}\, = \, {\large \frac{9\cdot 673}{2}}$.

Ora, poiché:

$\small BF \,=\, 3\cdot EF\;\;$ (lo abbiamo già visto)

e:

${\small EF = AC}\cdot {\large \frac{\sqrt{3}}{2}}\;\; $ (è l'altezza del triangolo equilatero di lato $\, \small AC$, la formula è nota)

abbiamo subito:

${\small BF = AC\cdot 3}\cdot {\large \frac{\sqrt{3}}{2}} $.

Dunque, grazie al caro Pitagora:

${\small BC = \sqrt{BF^2 + CF^2}} = \sqrt{\left({\small AC\cdot 3}\cdot {\large \frac{\sqrt{3}}{2}}\right)^2 + \left({\large \frac{AC}{2}}\right)^2} = {\large \frac{AC}{2}}\cdot \sqrt{\small 9\cdot 3+1} = {\small AC}\cdot \sqrt{7} = {\large \frac{9·673}{2}}\cdot \sqrt{7} \; ≈ \; 8013\,$ metri.

Ho lasciato le approssimazioni all'ultimo passaggio: meno si approssima, in geometria, meglio è.

Cosa dici, Tania, ora riesci a orientarti nella tua foresta?

Re: La foresta triangolare

Inviato: sab mar 30, 2019 7:11 am
da Tesspi
Perfetto!
Grazie davvero