Sulla lavagna...cancella e scrivi (1)

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1006
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Sulla lavagna...cancella e scrivi (1)

Messaggio da Gianfranco » mer set 25, 2019 8:48 pm

Questo problemino è anche nella home del sito.

Problema 1.
Sulla lavagna sono scritti i numeri da 1 a 10.
Scegli due numeri a caso, $a$, $b$, cancellali e scrivi al loro posto il numero $a+b+ab$.
Ora ci sono 9 numeri sulla lavagna.
Ripeti la procedura: scegli due numeri a caso, cancellali e scrivi sulla lavagna il numero dato dalla loro somma più il loro prodotto.
Ora ci sono 8 numeri sulla lavagna.
Ripeti la procedura fino a quando sulla lavagna c'è un solo numero.
Che numero è?
---
Problema 2. (variazione sul tema)
Al posto di $a$, $b$, scrivi $\sqrt{a^2+b^2}$.
Che numero ottieni alla fine?
Pace e bene a tutti.
Gianfranco

Pasquale
Livello 11
Livello 11
Messaggi: 2364
Iscritto il: mer mag 25, 2005 1:14 am

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da Pasquale » mer set 25, 2019 11:35 pm

Nel 1° caso, direi 39.916.799 :

Codice: Seleziona tutto

DIM n(10)
FOR m=1 TO 10
   LET n(m)=m
NEXT M

RANDOMIZE
FOR m=1 TO 9
10
      LET a=1+INT(RND*10)
      IF n(a)=0 THEN GOTO 10
20
      LET b=1+INT(RND*10)
      IF n(b)=0 OR b=a THEN GOTO 20
      LET c=n(a)+n(b)+n(a)*n(b)
      LET n(a)=c
      LET n(b)=0
   NEXT m
    
   FOR m=1 TO 10
      IF n(m)>0 THEN PRINT n(m)
   NEXT M   

END



Nel 2°caso 19,621416870.......... :

Codice: Seleziona tutto

DIM n(10)
FOR m=1 TO 10
   LET n(m)=m
NEXT M

RANDOMIZE
FOR m=1 TO 9
10
      LET a=1+INT(RND*10)
      IF n(a)=0 THEN GOTO 10
20
      LET b=1+INT(RND*10)
      IF n(b)=0 OR b=a THEN GOTO 20
      LET c=SQR(n(a)^2+n(b)^2)
      LET n(a)=c
      LET n(b)=0
   NEXT m
    
   FOR m=1 TO 10
      IF n(m)>0 THEN PRINT n(m)
   NEXT M   
END
Ultima modifica di Pasquale il gio set 26, 2019 9:46 pm, modificato 1 volta in totale.
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1006
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da Gianfranco » gio set 26, 2019 8:33 am

Pasquale, perfetto!
Due programmi scritti bene!
Nel primo caso il risultato è $11!-1$ e nel secondo $\sqrt{385}$ (somma dei quadrati dei numeri da 1 a 10).
Come hai certamente notato, il risultato non dipende dall'ordine di estrazione dei numeri quindi è un invariante.
Come si può dimostrare senza usare il computer?
Pace e bene a tutti.
Gianfranco

panurgo
Livello 8
Livello 8
Messaggi: 1177
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da panurgo » gio set 26, 2019 10:48 am

Consideriamo tre numeri $a$, $b$ e $c$ e applichiamo l’algoritmo in questo ordine:

primo passo

$\displaystyle \left\{a,\,b,\,c\right\}\quad\to\quad\left\{\left(a+b+ab\right),\,c\right\}$

e il primo dei due numeri rimasti e simmetrico rispetto allo scambio tra $a$ e $b$;

secondo passo

$\displaystyle \left\{\left(a+b+ab\right),\,c\right\}\quad\to\quad\left\{\left(a+b+ab\right)+c+\left(a+b+ab\right)c\right\} =\left\{\left(a+b+c+ab+ac+bc+abc\right)\right\} $

il numero finale è simmetrico rispetto allo scambio di $a$, $b$ e $c$.

Un quarto numero, $d$, viene aggiunto come tale (grado 1) e moltiplicato per gli altri (grado 2), per il prodotto degli altri due a due (grado 3) ed infine per il prodotto degli altri tre (grado 4): il risultato rimane simmetrico rispetto allo scambio tra numeri.

Un quinto numero... ecc.

Non ho verve di formalizzarlo più di così, ma mi sembra abbastanza evidente.
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

panurgo
Livello 8
Livello 8
Messaggi: 1177
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da panurgo » gio set 26, 2019 6:05 pm

Per il problema due ho una dimostrazione visuale
SL-C&S.02.png
Evidentemente il risultato finale non dipende dall'ordine con il quale scegliamo gli spigoli da seguire (mi dispiace: ho provato a fare il disegno con più di tre numeri ma non ci sono riuscito... :lol: )
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Pasquale
Livello 11
Livello 11
Messaggi: 2364
Iscritto il: mer mag 25, 2005 1:14 am

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da Pasquale » gio set 26, 2019 11:24 pm

Ho provato a dare una risposta a quanto richiesto da Gianfranco, ma al momento non ho individuato una strada da seguire.

Per quanto riguarda invece la routine, così come concepita, ho pensato che in fondo l'esatto risultato prodotto dalla stessa potrebbe essere dovuto ad una fortunata casualità.
Quindi, per aumentare la validità dell'uso della routine, ho apportato alla stessa una piccola modifica, reiterando il procedimento 10.000 volte, sommandone i risultati ed estraendone la media, nel tentativo di diminuire i dubbi sulla possibilità di un risultato scarsamente accettabile, perché semplicemente fortunato.
Inoltre, la routine così integrata può essere avviata più volte, oppure la suddetta reiterazione può essere ulteriormente aumentata, optando per la doppia precisione di cui dispone Decimal Basic.
In sostanza, se il risultato non sarà mai diverso, si può pur concludere che sia molto probabilmente esatto, anche se potrebbe essere sempre considerato non certissimo, ma con scarsa probabilità, in linea di principio, che possa essere molto diverso.

Codice: Seleziona tutto

DIM n(10)
LET tot=0
FOR p=1 TO 10000

   FOR m=1 TO 10
      LET n(m)=m
   NEXT M
    
   RANDOMIZE
   FOR m=1 TO 9
10
         LET a=1+INT(RND*10)
         IF n(a)=0 THEN GOTO 10
20
         LET b=1+INT(RND*10)
         IF n(b)=0 OR b=a THEN GOTO 20
         LET c=n(a)+n(b)+n(a)*n(b)
         LET n(a)=c
         LET n(b)=0
      NEXT m
       
      FOR m=1 TO 10
         IF n(m)>0 THEN LET tot=tot+n(m)
      NEXT M   
   NEXT P
   PRINT tot/10000   
END
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

panurgo
Livello 8
Livello 8
Messaggi: 1177
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da panurgo » ven set 27, 2019 11:53 am

Torno alla carica con il primo problema.

Abbiamo visto che il risultato non dipende dall’ordine con cui scegliamo i numeri quindi possiamo procedere in ordine crescente:

con $\left\{1\right\}$ abbiamo $1=2!-1$;

con $\left\{1,\,2\right\}$ abbiamo $\left(2!-1\right)+2+2\cdot \left(2!-1\right) =2!+2\cdot 2!-1=3\cdot 2!-1=3!-1$;

con $\left\{1,\,2,\,3\right\}$ abbiamo $\left(3!-1\right)+3+3\cdot \left(3!-1\right) =3!+3\cdot 2!-1=4\cdot 3!-1=4!-1$;

con $\left\{1,\,2,\,3,\,4\right\}$ abb...
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1006
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Sulla lavagna...cancella e scrivi (1)

Messaggio da Gianfranco » ven set 27, 2019 1:33 pm

@Pasquale,
ti ringrazio nuovamente per i programmini che sono chiari, efficienti, concisi.
Credo però che l'ultimo, quello con la ripetizione delle prove, in realtà non aggiunga molto perché basta eseguire poche volte i programmi singoli per iniziare a sospettare che i risultati siano sempre gli stessi.
E questo fatto spinege a indagare sulla struttura dell'algoritmo per dimostrare matematicamente l'invarianza del risultato.

@panurgo,
bella la dimostrazione visuale. In pratica è come calcolare la diagonale di un parallelepipedo rettangolo a 10 dimensioni.
Interessanti anche le argomentazioni sull'altro problema, grazie.
Pace e bene a tutti.
Gianfranco

Rispondi