Somma e prodotto

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
Brontolo

Somma e prodotto

Messaggio da Brontolo » sab dic 10, 2005 2:01 am

Il prodotto N di tre interi positivi è 6 volte la loro somma e uno degli interi è la somma degli altri due. Trovare la somma di tutti i possibili valori di N.

Pasquale
Livello 11
Livello 11
Messaggi: 2333
Iscritto il: mer mag 25, 2005 1:14 am

Messaggio da Pasquale » mar dic 13, 2005 12:12 am

N = abc = 6(a+b+c)
a = b+c

abc = 6(a+a) = 12a
bc = 12

12a = 6(a+b+c)
2a = a+b+c

b+c=a
bc=12

da cui:

c^2 - ac + 12 = 0

c = \frac {a \mp \sqrt {a^2 - 48}}{2}

Il delta deve essere un quadrato perfetto e questo si verifica per: a = 7; a = 8; a = 13

(Per tutti i valori di a>13, non si verifica più un c intero ed in particolare, a partire da a=25, per il quale la radice del delta è maggiore di 24, certamente non è più possibile che esistano altri valori di a per i quali si possa ottenere un c intero, in quanto la differenza fra due quadrati successivi sarà sempre maggiore di 48 )

da cui :

a = 7; c = 3; b = 4; N = 84
a = 7; c = 4; b = 3; N = 84
a = 8; c = 2; b = 6; N = 96
a = 8; c = 6; b = 2; N = 96
a = 13; c = 1; b = 12; N = 156
a = 13; c = 12; b = 1; N = 156

quindi: 84 + 96 + 156 = 336
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Bruno
Livello 8
Livello 8
Messaggi: 1011
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Messaggio da Bruno » mar dic 13, 2005 2:59 pm

...

E' così anche per me.

In alternativa, riprendendo il sistema fissato da Pasquale:

\displaystyle \left{ b+c = a \\ b \cdot c = 12

potremmo anche osservare che:

\displaystyle 12 = 1 \cdot 12 = 2 \cdot 6 = 3 \cdot 4

e perciò la determinazione dei possibili valori di \displaystyle N ci condurrebbe,
fondamentalmente, ai seguenti tre casi:

\displaystyle 1 \cdot 12 \cdot (1+12) = 156 \\ 2 \cdot 6 \cdot (2+6) = 96 \\ 3 \cdot 4 \cdot (3+4) = 84 .

;) Bruno

Rispondi