Sei punti su una circonferenza

Forum dedicato ai quesiti irrisolti presenti nella collezione di Base5, nel vecchio forum ed in quello attuale.

Moderatori: Gianfranco, Bruno

Rispondi
bautz
Livello 5
Livello 5
Messaggi: 219
Iscritto il: lun set 25, 2006 3:48 pm

Sei punti su una circonferenza

Messaggio da bautz » lun set 25, 2006 11:07 pm

Dalla sezione "I regoli di Golomb"

4. Sei punti su una circonferenza

Come si possono disporre 6 punti su una circonferenza in modo da poter misurare tutti gli angoli multipli di 18° ovvero tutti gli archi multipli di 1/20 di circonferenza?


Ho pensato una soluzione (ma forse ce ne sono altre).
I numeri nel cerchio sono i 20imi di 360° (quindi 3 sta per 3*18°, ovvero54°)

Immagine

Giusto?

Bruno
Livello 8
Livello 8
Messaggi: 1020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Messaggio da Bruno » sab set 30, 2006 10:46 am

...

Bella soluzione, Bautz :D
Partendo da "mezzogiorno" e procedendo in
senso orario, la tua risposta può essere scritta
così:
{1,2,6,1,6,4}.
Mi era sfuggito questo problema (non frequento
molto "Quesiti irrisolti", di solito, per mancanza di
tempo), però gli ho 'strizzato' anch'io un pensiero
e ho trovato questa soluzione:
{1,3,6,3,6,1}.
Anche con 1, 3 e 6 (i primi tre numeri triangolari!),
e cioè con tre soli tipi di numeri, si posson misurare
tutti gli archi multipli di un ventesimo di circonferenza.

A presto!


Bruno
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

bautz
Livello 5
Livello 5
Messaggi: 219
Iscritto il: lun set 25, 2006 3:48 pm

Messaggio da bautz » sab set 30, 2006 7:46 pm

Approfondimento:
Oggi ho pensato a quali cifre da 1 a 10 possono dividere il cerchio nelle sei parti con le proprietà sopradette, e scarabocchiando mi è partito un pò di tempo.
Tra parentesi tonde () ci sono le cifre utilizzate, anche più di una volta, nella serie, che è compresa tra parentesi graffe {}.
Le serie cifre che fanno riuscire il gioco sono solo quelle elencate, mentre per ogni serie di cifre non escludo che ci possa essere più di una soluzione. Io ne ho messo una esplicativa.

Cifre usate: Soluzione risultante:

(1-2-5) {1,2,2,5,5,5}
(1-2-7) {1,2,1,2,7,7}
(1-3-5) {1,1,3,5,5,5}
(1-3-6) {1,1,3,6,3,6}
(1-3-7) {1,1,1,3,7,7}

(1-2-3-8) {3,3,3,1,8,2}
(1-2-3-9) {2,3,3,1,9,2}
(1-2-3-10) {3,1,10,2,3}
(1-2-4-6) {1,2,6,1,6,4}
(1-2-4-7) {2,1,2,4,4,7}
(1-2-4-8) {1,8,1,2,4,4}
(1-2-4-9) {4,2,2,2,1,9}
(1-2-5-6) {1,2,1,5,5,6}
(1-2-5-8) {2,1,5,2,2,8}
(1-2-5-9) {1,2,1,5,2,9}
(1-2-5-10) {1,1,2,5,1,10}
(1-2-6-7) {2,1,2,2,6,7}
(1-2-6-8) {2,1,2,1,6,8}
(1-2-6-9) {1,2,1,1,6,9}
(1-3-4-7) {1,1,3,7,4,4}
(1-3-4-8) {1,1,3,3,4,8}
(1-3-4-10) {1,1,1,4,3,10}
(1-4-5-8) {1,1,1,4,5,8}
(1-4-6-7) {1,1,1,4,6,7}

(1-2-3-4-5) {1,2,3,4,5,5}
(1-2-3-4-6) {1,2,3,4,4,6}
(1-2-3-4-7) {1,4,3,3,2,7}
(1-2-3-4-8) {1,2,3,4,8,2}
(1-2-3-4-9) {1,2,3,4,1,9}
(1-2-3-5-6) {1,6,5,3,2,3}
(1-2-3-5-8) {1,1,5,2,8,3}
(1-2-4-5-6) {1,2,6,2,5,4}
(1-2-4-5-7) {1,1,4,5,7,2}
la matematica è un opinione

Bruno
Livello 8
Livello 8
Messaggi: 1020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Messaggio da Bruno » lun ott 02, 2006 10:37 am

bautz ha scritto:Approfondimento:
Oggi ho pensato a quali cifre da 1 a 10 possono dividere il cerchio nelle sei parti con le proprietà sopradette, e scarabocchiando mi è partito un pò di tempo.
Tra parentesi tonde () ci sono le cifre utilizzate, anche più di una volta, nella serie, che è compresa tra parentesi graffe {}.
Le serie cifre che fanno riuscire il gioco sono solo quelle elencate, mentre per ogni serie di cifre non escludo che ci possa essere più di una soluzione. Io ne ho messo una esplicativa.

Cifre usate: Soluzione risultante:

(1-2-5) {1,2,2,5,5,5}
(1-2-7) {1,2,1,2,7,7}
(1-3-5) {1,1,3,5,5,5}
(1-3-6) {1,1,3,6,3,6}
(1-3-7) {1,1,1,3,7,7}

(1-2-3-8 ) {3,3,3,1,8,2}
(1-2-3-9) {2,3,3,1,9,2}
(1-2-3-10) {3,10,1,1,2,3} *
(1-2-4-6) {1,2,6,1,6,4}
(1-2-4-7) {2,1,2,4,4,7}
(1-2-4-8 ) {1,8,1,2,4,4}
(1-2-4-9) {4,2,2,2,1,9}
(1-2-5-6) {1,2,1,5,5,6}
(1-2-5-8 ) {2,1,5,2,2,8}
(1-2-5-9) {1,2,1,5,2,9}
(1-2-5-10) {1,1,2,5,1,10}
(1-2-6-7) {2,1,2,2,6,7}
(1-2-6-8 ) {2,1,2,1,6,8}
(1-2-6-9) {1,2,1,1,6,9}
(1-3-4-7) {1,1,3,7,4,4}
(1-3-4-8 ) {1,1,3,3,4,8}
(1-3-4-10) {1,1,1,4,3,10}
(1-4-5-8 ) {1,1,1,4,5,8}
(1-4-6-7) {1,1,1,4,6,7}

(1-2-3-4-5) {1,2,3,4,5,5}
(1-2-3-4-6) {1,2,3,4,4,6}
(1-2-3-4-7) {1,4,3,3,2,7}
(1-2-3-4-8 ) {1,2,3,4,8,2}
(1-2-3-4-9) {1,2,3,4,1,9}
(1-2-3-5-6) {1,6,5,3,2,3}
(1-2-3-5-8 ) {1,1,5,2,8,3}
(1-2-4-5-6) {1,2,6,2,5,4}
(1-2-4-5-7) {1,1,4,5,7,2}
Complimenti per l'esplorazione, Bautz :D
Certo, aiuta tanto avere un po' di tempo a favore!
Come dici tu, comunque, possiamo senz'altro
aggiungere altre soluzioni alla tua sequenza.
La prima che mi viene in mente è questa, per
esempio (tutti quadrati!):

(1,4,9){1,1,4,4,9,1}

e perciò abbiamo una nuova serie di tre cifre
non compresa nel 1° gruppo.
Ma ne ho appena vista un'altra... :wink:

Dove ho messo l'asterisco, richiamando il tuo testo,
ho aggiunto l' 1 mancante.

Ciao!


Bruno
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Rispondi