La ricerca ha trovato 100 risultati

da karl
dom giu 29, 2008 6:45 pm
Forum: Il Forum
Argomento: Diversivo da Settimana Enigmistica (2)
Risposte: 5
Visite : 1300

Re: Diversivo da Settimana Enigmistica (2)

Perché è una formica maledettamente bugiarda !!!
karl
da karl
dom giu 29, 2008 6:39 pm
Forum: Il Forum
Argomento: A proposito di progressioni...
Risposte: 2
Visite : 728

Re: A proposito di progressioni...

Molto bene,0-§ ! Non ho preso l'esercizio da oliforum ,anzi ignoro se su quel sito
ci sia una cosa analoga.In effetti i miei quesiti o sono copiati di sana pianta
dal web ( :D :D ) o sono personali rielaborazioni ( a volte anche riuscite !) di
problemi pescati un po' dovunque.
Saluti
karl
da karl
dom giu 29, 2008 11:05 am
Forum: Il Forum
Argomento: A proposito di progressioni...
Risposte: 2
Visite : 728

A proposito di progressioni...

Vi propongo questi ....semplici quesiti sulle progressioni. 1) Dimostrare che in una progressione aritmetica è: \large \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+...+ \frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}} 2)In una progressione geometrica sono note...
da karl
dom giu 08, 2008 11:39 am
Forum: Il Forum
Argomento: Una figura vale più....
Risposte: 7
Visite : 985

Re: Una figura vale più....

Ovviamente sono io che mi complimento con Gianfranco per la deliziosa soluzione. Chi volesse una generalizzazione del problema può andare all'indirizzo: http://olimpiadi.ing.unipi.it/oliForum/viewtopic.php?t=9296&postdays=0&postorder=asc&start=15 Buona domenica a tutti e per domani Forza Italia !!!
da karl
sab mag 31, 2008 3:27 pm
Forum: Il Forum
Argomento: Semplice a dirsi
Risposte: 2
Visite : 1063

Re: Semplice a dirsi

Una formula generale per la soluzione del sistema può essere la seguente ( non di certo la più semplice !!) \large \begin{cases} b=\frac{-19m^2+724m-6878}{m^2-362}\\ a=\sqrt{362(b^2+1)}-19b=\frac{723m^2-27512m+261726}{m^2-362}\\ x=a^2-1\\ y=b^2\\ z=ab\\ w=\frac{a^2-b^2-1}{19}+ab\\ \end{cases} Al var...
da karl
mar mag 27, 2008 2:57 pm
Forum: Il Forum
Argomento: Una figura vale più....
Risposte: 7
Visite : 985

Una figura vale più....

Immagine
Calcolare le ampiezze degli angoli x ed y.
E' severamente vietato l'uso della calcolatrice !!!
:D
karl
da karl
mar mag 27, 2008 11:21 am
Forum: Il Forum
Argomento: Un interessante triangolo
Risposte: 4
Visite : 1000

Re: Un interessante triangolo

Ringrazio Bruno per il "raffinata" ma la mia soluzione non è
molto diversa da quella di Giampietro... Come ho detto,
l'idea di studiare questo particolare triangolo m'è venuta
rileggendo il tema di maturità dell'anno scorso.
A risentirci e salutissimi.
karl
da karl
ven mag 23, 2008 12:23 pm
Forum: Il Forum
Argomento: Un interessante triangolo
Risposte: 4
Visite : 1000

Re: Un interessante triangolo

Bene Giampietro,ottima soluzione. Il motivo del quesito è stato un problema di maturità dello scorso anno ( o del 2006) nel quale si chiedeva di trovare il luogo del terzo vertice C di un triangolo ABC nel quale fosse \large AB=1 e appunto \large \alpha=2\beta . Conoscendo la relazione \large a^2=b^...
da karl
mar mag 20, 2008 8:30 pm
Forum: Il Forum
Argomento: Un interessante triangolo
Risposte: 4
Visite : 1000

Un interessante triangolo

Sia ABC il generico triangolo nel quale ,secondo l'ordinaria nomenclatura,siano: \large a,b,c i lati \large O il circocento, \large I l'incentro , \large I_a l'excentro relativo al lato BC=a \large l_a la bisettrice dell'angolo in A Se l'angolo in A è il doppio dell'angolo in B ,dimostrare che: (1) ...
da karl
mar mag 20, 2008 8:08 pm
Forum: Il Forum
Argomento: L'angolo acuto.
Risposte: 1
Visite : 772

Re: L'angolo acuto.

http://img129.imageshack.us/img129/6029/jumpyxs4.jpg Possiamo indicare l'angolo acuto dato con \large \alpha e la posizione del punto P ,egualmente dato, con P(p,q) essendo p e q le sue coordinate rispetto ad una sistema di assi (non ortogonali ) dati dai lati dell'angolo. Dalla similitudine dei tr...
da karl
mar mag 13, 2008 6:28 pm
Forum: Il Forum
Argomento: Two chips
Risposte: 3
Visite : 746

Re: Two chips

N° 2 Una certa semplificazione di calcoli si può ottenere operando in mod 8.In tal caso il polinomio diventa : (1) \large n^4+6n^3+3n^2-2n=n(n+1)(n^2+5n-2) Per quello che serve è sufficiente suppore n pari divisibile per 4: n=4h n pari ma non divisibile per 4:n=4h+2 n dispari :n=4h+1,oppure n=4h+3 S...
da karl
mar mag 13, 2008 9:01 am
Forum: Il Forum
Argomento: Una curiosa relazione
Risposte: 6
Visite : 860

Re: Una curiosa relazione

Puntuale e precisa ,come sempre,la risposta di Bruno.Una soluzione alternativa,ma non molto dissimile da quella di Bruno,si può avere riducendo a forma intera la prima relazione. In questo modo ,a conti fatti,viene l'eguaglianza: (a+b)(b+c)(c+a)=0 da cui ,tenuto conto che a,b e c devono essere non n...
da karl
lun mag 12, 2008 11:08 am
Forum: Il Forum
Argomento: Una curiosa relazione
Risposte: 6
Visite : 860

Re: Una curiosa relazione

Non credo sia lecito,nel confronto di due frazioni,eguagliare i numeratori
e i denominatori tra loro.
Per esempio da \frac{8}{6}=\frac{4}{3} non si deduce che 8=4 e 6=3.
Inoltre la traccia parla chiaramente di a,b,c come di numeri reali
karl
da karl
dom mag 11, 2008 10:28 am
Forum: Il Forum
Argomento: Una curiosa relazione
Risposte: 6
Visite : 860

Una curiosa relazione

Siano a,b,c tre numeri reali ed n un intero( positivo) dispari qualunque.
Dimostrare che se è :
\large \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}
risulta pure:
\large\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}
karl
da karl
dom mag 11, 2008 10:06 am
Forum: Il Forum
Argomento: Luogo geometrico
Risposte: 14
Visite : 1389

Re: Luogo geometrico

Il luogo è proprio la retta indicata da Jumpy94.Studiandola un po' ,si vede che essa è la retta perpendicolare ad OA e distante da O di \frac{x_o^2+y_o^2-r^2}{2\sqrt{x_o^2+y_o^2}} Più semplicemente se si pone \sqrt{x_0^2+y_o^2}=a ,cioé se si pone OA=a, essa è la retta perpendicolare ad OA e distante...