Intermezzi (quasi soprappensiero).

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
Bruno
Livello 10
Livello 10
Messaggi: 2020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Intermezzi (quasi soprappensiero).

Messaggio da Bruno »

a) Abbiamo le cifre da 1 a 9, in quest'ordine. Cambiare il posto a due di esse per formare un multiplo di 11.

b) Consideriamo il numero composto da 3333 cifre decimali uguali a 3. Che resto si ottiene dividendolo per 101?

c) Se $\;\frac{\Large \sqrt{44\cdot n^2+1} + 1}{\Large 2}\;$ è intero, allora è un quadrato perfetto.

d) Trovare tutte le coppie di interi positivi $\,(x,y)\,$ che soddisfano l’equazione $\,2\cdot x\cdot y + 7\cdot x - 5\cdot y - 1 = 0$.

e) Questi numeri 0, 3, 20, 33, 47, 66, 117, 146, 174, 209, 294, 339, 381, ... hanno una proprietà che li lega a 175². Qual è?

f) Arcibaldo, giocherellando con riga e compasso, ha realizzato la seguente figura geometrica.
a.jpg
a.jpg (13.1 KiB) Visto 8807 volte
Il triangolo evidenziato, secondo l'autore del disegno, è equilatero.
Cosa ne dite?

---------

Le considerazioni a monte del risultato sono più importanti del risultato stesso.
(Bruno)

...........................
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
{Biagio Marin}
................................................................
Meglio soluzioni sbagliate che risposte esatte.
{Rudi Mathematici}

panurgo
Livello 9
Livello 9
Messaggi: 1521
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Primo Intermezzo (non proprio soprappensiero).

Messaggio da panurgo »

Perché un numero sia divisibile per $11$ occorre che la differenza tra la somma delle cifre pari e quella delle cifre dispari sia un multiplo di $11$.
Il numero $123456789$ ha i primi cinque numeri dispari in posizione dispari, totale $25$, e i primi quattro numeri pari in posizione pari, totale $20$.
Dobbiamo trovare due numeri $a$ e $b$, con $a\in\left\{1,3,5,7,9\right\}$ e $b\in\left\{2,4,6,8\right\}$, tali che

$\displaystyle \left(25-a+b\right)-\left(20-b+a\right)=11k$

ovvero

$\displaystyle b-a=\frac{11k-5}2$

Evidentemente $k$ deve essere dispari e non può che essere $1$ perché con $k=3$ avremmo $b-a=14$: deve perciò essere

$\displaystyle b-a=3$

cioè

$\displaystyle\left\{\begin{array}{lC}
\left\{1,4\right\}\quad\to\quad 423156789=11\times 38468799\\
\left\{3,6\right\}\quad\to\quad 126453789=11\times 11495799\\
\left\{5,8\right\}\quad\to\quad 123486759=11\times 11226069
\end{array}\right.$
il panurgo

Principio di Relatività: $\mathbb{m} \not \to \mathbb{M} \, \Longleftrightarrow \, \mathbb{M} \not \to \mathbb{m}$
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

panurgo
Livello 9
Livello 9
Messaggi: 1521
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Secondo Intermezzo (soprappensiero?).

Messaggio da panurgo »

Osservo che $303$ è divisibile per $101$ così come $3030$: la loro somma, $3333$, è anch'essa divisibile. Altrettando divisibili sono $33330000$, $333300000000$ ecc.

Osservo inoltre che il numero di cifre diviso $4$ da resto $1$ quindi il resto della divisione è $3$ (risultato confermato da wolframalpha)
il panurgo

Principio di Relatività: $\mathbb{m} \not \to \mathbb{M} \, \Longleftrightarrow \, \mathbb{M} \not \to \mathbb{m}$
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

panurgo
Livello 9
Livello 9
Messaggi: 1521
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Quarto Intermezzo (soprappensiero, il giorno dopo...).

Messaggio da panurgo »

Esprimiamo $x$ in funzione di $y$

$\displaystyle x=\frac{5y+1}{2y+7}$

Per $y=0$ è $x=\frac17$ ed è

$\displaystyle \lim_{y\to\infty}x=\frac52$

quindi $x$ può valere $1$ o $2$: il primo valore si ha per $y=2$ mentre il secondo si ha per $y=13$ e le coppie sono $\left(1,2\right)$ e $\left(2,13\right)$ :wink:
il panurgo

Principio di Relatività: $\mathbb{m} \not \to \mathbb{M} \, \Longleftrightarrow \, \mathbb{M} \not \to \mathbb{m}$
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Bruno
Livello 10
Livello 10
Messaggi: 2020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Intermezzi (quasi soprappensiero).

Messaggio da Bruno »

Impeccabile :D

Mi hanno fatto molto ridere, Guido, le tue variazioni del titolo :wink:

Naturalmente, ci possono essere altri approcci.

Riguardo al punto d, ho preferito invece fermarmi su questa uguaglianza: (2·x - 5)·y = 1 - 7·x.
Poiché x e y sono positivi, anche il membro sinistro deve essere negativo, perciò è immediato
concludere che x possa solo assumere i valori 1 e 2.

Due parole anche sul punto b.
Si dimostra facilmente che se scriviamo n cifre uguali a 1, dividendo il numero ottenuto per 101
si possono avere i seguenti resti: 0 (per n ≡ 0 mod 4), 1 (per n ≡ 1 mod 4), 11 (per n ≡ 2 mod 4)
e 10 (per n ≡ 3 mod 4). Pertanto, quando il numero delle cifre è di tipo 4∙k+1 il resto è sempre 1
se consideriamo i numeri 11...11, 2 per 22...22, 3 per 33...33 etc. Nel nostro caso troviamo 3
proprio perché 3333 = 4∙833+1.
(Bruno)

...........................
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
{Biagio Marin}
................................................................
Meglio soluzioni sbagliate che risposte esatte.
{Rudi Mathematici}

panurgo
Livello 9
Livello 9
Messaggi: 1521
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Sesto Intermezzo (guidando soprappensiero: pensavo all'intermezzo).

Messaggio da panurgo »

Ciascuna delle quattro figura blu è inscritta in un quadrante con il centro che giace su una bisettrice, data la loro simmetria. Se il raggio del cerchio grande è unitario allora il raggio dei cerchi piccoli vale $\sqrt2-1$, la base del triangolo vale $4-2\sqrt2$, la sua altezza vale $1$ e il lato vale $\sqrt{7-4\sqrt2}\neq 4-2\sqrt2$: il triangolo non è equilatero...
il panurgo

Principio di Relatività: $\mathbb{m} \not \to \mathbb{M} \, \Longleftrightarrow \, \mathbb{M} \not \to \mathbb{m}$
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Bruno
Livello 10
Livello 10
Messaggi: 2020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Intermezzi (quasi soprappensiero).

Messaggio da Bruno »

È così :D

La questione è comunque interessante perché si tratta di un triangolo isoscele con angoli interni molto prossimi a 60°.
(Bruno)

...........................
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
{Biagio Marin}
................................................................
Meglio soluzioni sbagliate che risposte esatte.
{Rudi Mathematici}

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1707
Iscritto il: ven mag 20, 2005 9:51 pm
Località: Sestri Levante
Contatta:

Re: Intermezzi (quasi soprappensiero).

Messaggio da Gianfranco »

Riguardo al punto c)
c) Se $\frac{\large \sqrt{44\cdot n^2+1} + 1}{\large 2}$ è intero, allora è un quadrato perfetto.
riporto solo due osservazioni che per me sono state determinanti per risolverlo.
1) L'espressione è la radice positiva dell'equazione $x^2-x-11n^2=0$
2) se h è un numero intero, $h^2 MOD 11$ non è mai uguale a 10.
Pace e bene a tutti.
Gianfranco

Bruno
Livello 10
Livello 10
Messaggi: 2020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Intermezzi (quasi soprappensiero).

Messaggio da Bruno »

La tua osservazione (1) è il cardine.
Infatti, x·(x-1) = 11·n² impone che sia x = 11·p² e x - 1 = q², oppure x - 1 = 11·p² e x = q², per opportuni p e q.
Il primo caso non conduce a soluzioni intere, poiché il membro sinistro dell'equazione 11·p² - 1 = q² può assumere solo le forme 4·k - 1 e 4·k + 2, ma nessuna di esse corrisponde a un quadrato.
Allora bisogna considerare l'equazione 11·p² + 1 = q², per la quale x = q², cioè l'espressione in c è un quadrato.
Intendevi questo, Gianfranco?
Per risolvere questo tipo di problema ho seguito un percorso simile.

Rimane il punto e :wink:
(Bruno)

...........................
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
{Biagio Marin}
................................................................
Meglio soluzioni sbagliate che risposte esatte.
{Rudi Mathematici}

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1707
Iscritto il: ven mag 20, 2005 9:51 pm
Località: Sestri Levante
Contatta:

Re: Intermezzi (quasi soprappensiero).

Messaggio da Gianfranco »

Ciao Bruno, se non vuoi leggere questa cosa noiosa, salta in fondo, c'è una domanda.
---
Sostanzialmente ho seguito il percorso che hai indicato però in modo più contorto, sfruttando fino all'osso le poche nozioni che so.

...omettiamo le premesse...

Consideriamo l'equazione: $x^2-x-11n^2=0$

a) somma delle radici: $s = 1$
da cui si deduce che le radici sono numeri primi tra loro.

b) prodotto delle radici: $p= -11 n^2$
siccome le radici non hanno fattori comuni, devono devono "spartirsi" dei fattori quadrati di $n^2$ perciò devono essere del tipo:
$x1=11p^2$
$x2=q^2$
e una delle due deve avere il segno -.

Esaminiamo i due casi.
1°caso: $ x2=q^2 $ è la radice positiva.
Allora (usiamo la somma delle radici):
$q^2-11p^2=1$
$(q+1)(q-1)=11p^2$
Una dose minima di calcolo mentale ci porta a trovare una soluzione:
$(10+1)(10-1)=99=11*3^2$
In questo caso il teorema è dimostrato perché $ x2=q^2$ è un quadrato.

2° caso: $x1=11p^2$ è la radice positiva.
Se fosse vero, il teorema NON sarebbe vero.
Allora (usiamo la somma delle radici):
$11p^2-q^2=1$
$11p^2=q^2+1$

La domanda è: un quadrato moltiplicato per 11 può essere uguale a un altro quadrato più una unità?
Se fosse possibile, allora $q^2+1$ dovrebbe avere un fattore uguale a 11.
In altre parole, dovrebbe essere
$q^2+1 MOD 11 = 0$
ovvero
$q^2 MOD 11 = 10$
Ma una semplice verifica che si può fare anche a mente rivela che $n^2 MOD 11$ può avere come valori solo 0, 1, 4, 9, 5, 3.
Quindi questo secondo caso è escluso.
---
Mentre giocavo con questo problema mi è venuta una curiosità: da dove è uscita quell'equazione?
Te la sei inventata ad hoc per fare il problema o deriva da qualche altro lavoro?
Pace e bene a tutti.
Gianfranco

Bruno
Livello 10
Livello 10
Messaggi: 2020
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Intermezzi (quasi soprappensiero).

Messaggio da Bruno »

Grazie infinite, Gianfranco, per la tua spiegazione, tutt'altro che noiosa :D

Il problema proviene da una ricerca sulle forme quadratiche.
Ho affrontato qualcosa di molto simile in modo sostanzialmente non diverso da come ho illustrato sopra.
Qui, però, ho proposto un quesito confezionato ad hoc :wink:
(Bruno)

...........................
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
{Biagio Marin}
................................................................
Meglio soluzioni sbagliate che risposte esatte.
{Rudi Mathematici}

Rispondi