Numeri primi: cifra delle unità

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
Tino
Livello 5
Livello 5
Messaggi: 221
Iscritto il: mer mag 25, 2005 8:20 am
Località: Verona

Numeri primi: cifra delle unità

Messaggio da Tino » mer gen 14, 2015 10:27 pm

Ciao a tutti!

Secondo voi c'è un qualche motivo per cui le cifre delle unità dei numeri primi si distribuiscono uniformemente nell'insieme \{1,3,7,9\}? (Ho escluso 0,2,4,5,6,8 perché i numeri che finiscono con tali cifre sono ovviamente pari o multipli di 5).

Cerco di formalizzare il problema: fissiamo a \in \{1,3,7,9\}. Per n intero positivo sia P(n) il numero di numeri primi in \{1,\ldots,n\} che hanno a come cifra delle unità, cioè che sono congrui ad a modulo 10. E' vero che P(n)/n tende a 1/4 quando n \to \infty?

Il problema mi incuriosisce.
"Oh! But I have been blind- blind. Complex, I have said?
Complicated? Mais non. Of a simplicity extreme - extreme.
And miserable one that I am, I saw nothing - nothing."
(Peril At End House)

Pasquale
Livello 11
Livello 11
Messaggi: 2330
Iscritto il: mer mag 25, 2005 1:14 am

Re: Numeri primi: cifra delle unità

Messaggio da Pasquale » sab mag 14, 2016 4:11 pm

Mi pare accertato che al crescere di n la distanza fra un primo ed il successivo tenda ad aumentare ed allora, se questo è, dato un primo per n molto grande ed il seguente primo a distanza A sufficientemente grande, terminante ad esempio per 1, i successivi 10 numeri termineranno con la sequenza di tutte le altre cifre esistenti fino al ritorno della cifra 1 e questo accadrà per tutti i numeri che seguiranno, presi a 10 a 10, senza che si presenti alcun primo se non tendenzialmente alle successive distanze A+X, con X di volta in volta crescente.
Non voglio credere che tutti gli A+X siano congrui a 0 secondo il modulo 10 o secondo altro modulo fisso, altrimenti tutti i primi dovrebbero terminare sempre con la stessa cifra; d’altra parte non credo che sia nota una legge che abbia determinato i valori di X, per cui nell’ignoranza non resta che attribuir loro valori casuali, che giocoforza non potranno privilegiare alcuna cifra in particolare.
Concluderei quindi, in base a tale forse giustificato artificio logico, che è ragionevolmente possibile presumere che le 4 cifre dell’unità dei numeri primi (1,3,7,9 ) siano equamente distribuite fra i primi esistenti nell’insieme infinito dei numeri naturali, finquando non se ne dimostri il contrario.
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

panurgo
Livello 8
Livello 8
Messaggi: 1162
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Re: Numeri primi: cifra delle unità

Messaggio da panurgo » ven mag 27, 2016 4:06 pm

Potete dare un'occhiata a questo.
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 947
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Numeri primi: cifra delle unità

Messaggio da Gianfranco » ven mag 27, 2016 9:23 pm

Anche questo articolo, non recentissimo, affronta lo stesso argomento:
Distribution of the units digit of primes
Chung-Ming Ko
Physics Department, Institute of Astronomy and Center for Complex Systems, National Central University, Chung-Li 320, Taiwan, ROC
Accepted 15 June 2001
Abstract
A sequence is formed by the units digit of consecutive prime numbers. The sequence is not random. To visualize the non-randomness of the sequence, we utilize a method put forward by Hao et al. [Chaos, Solitons & Fractals 11 (2000) 825]. A fractal-like structure is observed.
Si trova qui:
https://www.researchgate.net/publicatio ... _of_primes
Pace e bene a tutti.
Gianfranco

Pasquale
Livello 11
Livello 11
Messaggi: 2330
Iscritto il: mer mag 25, 2005 1:14 am

Re: Numeri primi: cifra delle unità

Messaggio da Pasquale » sab mag 28, 2016 5:03 pm

Se ho capito bene, il Prof. Ko ha studiato il problema esaminando i primi 10.000.000 primi consecutivi, espressi rispetto a numerazioni in basi similari relativamente all'oggetto dello studio stesso, cioè tutte comprendenti primi con la cifra finale terminante in 4 modi possibili, come per la base 10. Il risultato mostrato per la base 8 lascia intravvedere un'equidistribuzione sulle 4 cifre (sempre che abbia capito bene).
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Bruno
Livello 8
Livello 8
Messaggi: 1002
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Numeri primi: cifra delle unità

Messaggio da Bruno » lun mag 30, 2016 9:15 am

Interessante l'articolo sul recente lavoro di Oliver e Soundararajan.

Grazie, Gianfranco, per aver proposto anche quello dell'astronomo Chung-Ming Ko.
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Rispondi