Moduli da spiaggia

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
David
Livello 4
Livello 4
Messaggi: 189
Iscritto il: mar ago 04, 2009 10:49 am

Moduli da spiaggia

Messaggio da David » mer ago 17, 2011 9:16 pm

Nessuno penso se ne avrà a male se sotto l'ombrellone in un caldo pomeriggio d'agosto al riparo dal solleone,
chiudendo gli occhi,fra frizzi e lazzi di rumorosi bagnanti in riva al mare,ho pensato ad una parabola un pò speciale:

Si consideri la funzione: y= Ax^2+Bx+C
ove A,B,C sono 3 numeri diversi da 0 appartenenti all'insieme Z degli interi relativi.
a)Scegliendo opportunatamente A;B;C dire per quali valori di n, ove n>1 risulta un numero appartenente all'insieme Z+ dei naturali, si possa affermare:
\left{y(0)\,\equiv\,0\;(Mod\, {n})\\y(1)\,\equiv\,1\;(Mod\, {n})\\y(2)\,\equiv\,2\;(Mod\, {n})\\.....\\.....\\.....\\y(n-2)\,\equiv\,n-2\;(Mod\, {n})\\y(n-1)\,\equiv\,n-1\;(Mod\, {n})

b) Nel caso n=6, posta la veridicità delle uguaglianze sopra esposte, indicare 3 valori A,B,C tali che sia:
A+B+C=1; A>B>C; A+C>0

c) Proporre 3 valori A,B,C diversi fra loro tali che le uguaglianze del punto a) siano soddisfatte simultaneamente per 29 valori
differenti di n

Bye David

Pasquale
Livello 11
Livello 11
Messaggi: 2355
Iscritto il: mer mag 25, 2005 1:14 am

Re: Moduli da spiaggia

Messaggio da Pasquale » lun set 05, 2011 11:47 pm

Purtroppo anch'io sono stato sulla spiaggia, ma ho preso troppo sole ed ho sepolto la parabola sotto la sabbia...mi dispiace, mi si risolveva solo la parabola Ax^2+Bx
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Quelo
Livello 6
Livello 6
Messaggi: 456
Iscritto il: ven giu 16, 2006 2:34 pm

Re: Moduli da spiaggia

Messaggio da Quelo » ven giu 08, 2012 9:24 pm

Ho ripescato questo quesito rimasto sepolto nella sabbia ...

a) Se poniamo

\left{A\,\equiv\,0\;\pmod{n}\\B\,\equiv\,1\;\pmod{n}\\C\,\equiv\,0\;\pmod{n}

le uguaglianze sono vere per ogni n>1 \in \mathbb{Z}+

Dati p, q, r \in \mathbb{Z}+

\left{A\,=\,pn\\B\,=\,qn+1\\C\,=\,rn\

y(x)=pnx^2+qnx+x+rn=n(px^2+qx+r)+x\,\equiv\,x\;(mod\, {n}) per x<n


b) A = 12; B = -5; C = -6

y(x)=12x^2-5x+6

\left{y(0) = 0\\y(1) = 1\\y(2) = 32\\.....\\.....\\.....\\y(5) = 269

c) Poniamo B = 1, A e C devono essere multipli di tutti i valori per cui le uguaglianze devono essere vere simultaneamente.
E' sufficiente scegliere un numero che abbia 29 divisori, ad es. 30! oppure 2^29.
Perché C sia diverso da A basta porre ad esempio C = -A oppure C = 2A

SE&O
Sergio

« La risposta non la devi cercare fuori, la risposta è dentro di te, e però è sbagliata » Parola di Quelo

Rispondi