L'ellisse circoscritta

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
franco
Livello 7
Livello 7
Messaggi: 922
Iscritto il: mar dic 12, 2006 12:57 pm
Località: Bèrghem (Sardegna)

L'ellisse circoscritta

Messaggio da franco » sab nov 17, 2018 8:34 am

Consideriamo una figura F composta da N=5 cerchi di raggio R=2 e con i centri allineati e distanti D=3 l'uno dall'altro.
Calcolare l'area minima di una ellisse che abbia un asse coincidente con l'allineamento dei cerchi e sia circoscritta a F.
Volendo, si può provare anche a generalizzare la soluzione in funzione di N, R e D.

www.diophante.fr D208
Franco

ENGINEER
noun. (en-juh-neer)
someone who does precision guesswork based on unreliable data provided by those of questionable knowledge.
See also wizard, magician

delfo52
Livello 9
Livello 9
Messaggi: 1375
Iscritto il: mer mag 25, 2005 3:19 pm
Località: bologna

Re: L'ellisse circoscritta

Messaggio da delfo52 » sab nov 17, 2018 6:38 pm

ho poca voglia di ragionare. Però un limite a 64 x pigreco lo posso mettere. che corrisponde al cerchio che abbraccia la figura, eche è una ellissi pure lui.
Per usare ellissi più ellittiche, si può deformare il cerchio. Ipotizzando la serie di cerchi piccoli in orizzontale, possiamo stirare il cerchio grande di raggio 8, circoscritto v, allungandolo in verticale, o schiacciandolo per renderlo simile ad un disco volante (visto di profilo). L'opzione di allungamento verticale sicuramemte aumenta la superficie rispetto al cerchio di raggio 8.
Rimane da indagare il "sigarone". Certamente deve essere piuttosto schiacciato; l'altezza non sarà molto superiore a 4 (a occhio direi attorno a 5). Molto più arduo fare una stima della larghezza.
Sempre in modo spannometrico, opto per un asse maggiore di 18. per una area di 22,5 x pigreco. A occhio, 70
Chi offre qualcosa di meglio?
Enrico

panurgo
Livello 8
Livello 8
Messaggi: 1160
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

L'ellisse circoscritta

Messaggio da panurgo » dom dic 02, 2018 3:28 pm

Dovendo cercare un modo per costruire un’ellisse circoscritta ho pensato che, se un cerchio e un’ellisse che lo contiene sono tangenti nel punto P vuol dire che, in quel punto, devono essere tangenti alla stessa retta.
EllisseCircoscritta640x256.png
EllisseCircoscritta640x256.png (22.39 KiB) Visto 1073 volte
Consideriamo il cerchio, di centro $\left(l;0\right)$ e raggio $r$, di equazione

$\displaystyle\left(x-l\right)^2+y^2=r^2$

e l’ellisse di equazione

$\displaystyle\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

tangenti nel punto $P\equiv\left(x_0;y_0\right)$.
Per ciascuno dei due scriviamo l’equazione della tangente utilizzando le formule dello sdoppiamento: per l’ellisse sostituiamo direttamente

$\begin{array}{|c|C}\hline
\displaystyle\frac{x_0}{a^2} x + \frac{y_0}{b^2} y = 1
\\\hline\end{array}$

mentre per il cerchio scriviamo prima l’equazione in forma normale

$\displaystyle x^2+y^2-2lx+l^2-r^2=0$

ed effettuiamo le sostituzioni

$\displaystyle x_0 x+y_0 y-2l\frac{x +x_0}2+l^2-r^2=0$

ovvero

$\displaystyle \left(x_0-l\right) x+y_0 y-l\left(x_0-l\right)-r^2=0$

quindi riarrangiamo

$\begin{array}{|c|C}\hline
\displaystyle\frac{x_0-l}{l\left(x_0-l\right)+r^2} x + \frac{y_0}{l\left(x_0-l\right)+r^2} y = 1
\\\hline\end{array}$

per ottenere lo stesso termine noto dell’equazione della tangente dell’ellisse: in questo modo, le due tangenti sono uguali se sono uguali i coefficienti di $x$ e $y$

$\left\{\begin{array}{lC}
\displaystyle \frac{x_0}{a^2}=\frac{x_0-l}{l\left(x_0-l\right)+r^2}\\
\displaystyle \frac{y_0}{b^2}=\frac{y_0}{l\left(x_0-l\right)+r^2}
\end{array}\right.$

da cui ricaviamo

$\left\{\begin{array}{lC}
\displaystyle a=\sqrt{\frac{x_0\left[l\left(x_0-l\right)+r^2\right]}{x_0-l}}=b\sqrt{\frac{x_0}{x_0-l}}\\
\displaystyle b=\sqrt{l\left(x_0-l\right)+r^2}
\end{array}\right.$

Per semplificarci la vita operiamo la sostituzione $x_0 = l + t$, con $t=r\cos\vartheta$ ottenendo

$\left\{\begin{array}{lC}
\displaystyle a=b\sqrt{\frac{l+t}t}\\
\displaystyle b=\sqrt{lt+r^2}
\end{array}\right.$

e l’area dell’ellisse sarà

$\displaystyle A=\pi ab=\pi\left(lt+r^2\right)\sqrt{\frac{l+t}t}$

Per minimizzarla troviamo la derivata in funzione di $t$

$\displaystyle A'=\pi l\sqrt{\frac{l+t}t}+\pi\left(lt+r^2\right)\frac{-\frac{l}{ t^2}}{2\sqrt{\frac{l+t}t}}=\pi l\frac{2t^2+lt-r^2}{2t^2\sqrt{\frac{l+t}t}} $

che si annulla per

$\displaystyle 2t^2+lt-r^2=0\quad\to\quad t=\frac{-l+\sqrt{l^2+8r^2}}4=0,561\ldots $

Quindi

$\displaystyle b=\sqrt{lt+r^2}=2,714\ldots,\qquad a=b\sqrt{\frac{l+t}t}=9,279\ldots,\qquad A=\pi ab=79,138\ldots$

La spannometria di Delfo è sempre mirabile, però la sua circonferenza appartiene ad un’altra famiglia di ellissi
EllisseCircoscritta640x640.png
EllisseCircoscritta640x640.png (52.67 KiB) Visto 1073 volte
quelle con l’asse maggiore coincidente con l’asse dei cinque cerchi, che comprende tutte le ellissi con semiasse maggiore $a=l+r$ e semiasse minore $\sqrt{lr+r^2}\leq b\leq a$.
Quando $t=r$ allora $y_0=0$, la tangente è verticale e $b$ non è definito dalle equazioni cosicché guadagniamo un grado di libertà: l’ellisse

$\displaystyle \frac{x^2}{\left(l+r\right)^2}+\frac{y^2}{lr+r^2}=1$

la più piccola di quelle illustrate, appartiene a tutte e due le famiglie.
Ultima modifica di panurgo il dom dic 02, 2018 5:46 pm, modificato 1 volta in totale.
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

delfo52
Livello 9
Livello 9
Messaggi: 1375
Iscritto il: mer mag 25, 2005 3:19 pm
Località: bologna

Re: L'ellisse circoscritta

Messaggio da delfo52 » dom dic 02, 2018 4:06 pm

In effetti avevo fatto il ragionamento prima sulle ellissi che tu esamini al termine; poi avevo fatto due calcoli a spanne proprio sulla falsariga del tuo ragionamento principale. La mia stima di 70 non è troppo lontana dall'80 scarso cui arrivi. L'asse maggiore, che avevo stimato a 18 andava quasi bene, ero stato più scarso nella stima dell'asse minore. Grazie per l'analisi più raffinata, cui io non sarei mai potuto arrivare
Enrico

Rispondi