Il quadrato nel quadrato

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
0-§
Livello 6
Livello 6
Messaggi: 454
Iscritto il: ven nov 18, 2005 10:33 pm
Località: Bologna

Il quadrato nel quadrato

Messaggio da 0-§ » dom ott 16, 2016 8:38 pm

Paoletto si è iscritto di recente a un corso di ceramica.

Come esercizio ha creato una bella piastrella quadrata, di lato unitario, finemente decorata.

Ma mentre la trasporta per esibirla inciampa e ... disastro! La piastrella cade per terra e si rompe.

Paoletto, dispiaciuto, nota che la piastrella si è rotta lungo due linee rette.

Nota anche che da uno dei pezzi si potrebbe ricavare un quadrato di lato pari a un terzo della piastrella originale.

Nell'immagine si vedono 3 modi in cui potrebbe essersi rotta la piastrella di Paoletto.
2016-10-16 21_26_00-GeoGebra.png
2016-10-16 21_26_00-GeoGebra.png (17.59 KiB) Visto 964 volte
Dimostrare che in realtà, dati due tagli lineari in un quadrato unitario, si trova sempre un quadrato di lato 1/3 contenuto in uno dei pezzi ricavati e con i lati paralleli a quelli del quadrato grande.

Saluti
0-§

P.S.: una volta risolto questo problema, potreste dimostrare che lo stesso vale se i tagli sono 3, prendendo un quadrato di lato 1/4.
Lo scopo principale di una dichiarazione DATA è quello di dare dei nomi alle costanti; anziché inserire ogni volta 3.141592653589793 come valore di \pi, con una dichiarazione DATA si può assegnare tale valore alla variabile PI che può essere poi usata per indicare la costante. Ciò rende anche più semplice modificare il programma, qualora il valore di \pi dovesse cambiare.

-Da un vecchio manuale FORTRAN della Xerox

panurgo
Livello 8
Livello 8
Messaggi: 1162
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Re: Il quadrato nel quadrato

Messaggio da panurgo » lun ott 17, 2016 6:31 pm

Si danno due possibilità:

caso 1: i due segmenti non si intersecano
quaNelQua001.png
quaNelQua001.png (12.12 KiB) Visto 947 volte
I due segmenti intersecano una diagonale principale suddividendola in tre parti sulle quali si possono costruire tre quadrati come in figura: almeno uno dei tre quadrati deve avere il lato maggiore o uguale ad un terzo di quello della piastrella.

caso 2: i due segmenti si intersecano

Supponiamo che i segmenti in questione siano le diagonali del quadrato
quaNelQua002.png
quaNelQua002.png (9.87 KiB) Visto 947 volte
Il quadrato piccolo in figura ha evidentemente il lato pari ad un terzo della piastrella (le sue diagonali sono congruenti ai tratti delle diagonali della piastrella che congiungono i vertici): per impedire questo quadrato sarebbe necessario abbassare almeno una delle due diagonali con la conseguenza di creare uno spazio maggiore dall'altra parte.

Potenza delle simmetrie... :wink:


Per quanto riguarda la rottura lungo tre segmenti l'argomento del caso 1 continua a valere: devo studiare il caso dei segmenti che si intersecano.

PS
quaNelQua003.png
quaNelQua003.png (7.36 KiB) Visto 936 volte
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Rispondi