Fra i multipli di 7.

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Fra i multipli di 7.

Messaggio da Bruno » mer set 18, 2019 2:07 pm

Un numero è formato da sette cifre consecutive, scritte ordinatamente l'una di seguito all'altra (in uno dei due sensi), al quale può essere aggiunta una stessa cifra, indifferentemente all'inizio o alla fine, ottenendo un multiplo di 7.

Come lo cerchereste?
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Pasquale
Livello 11
Livello 11
Messaggi: 2364
Iscritto il: mer mag 25, 2005 1:14 am

Re: Fra i multipli di 7.

Messaggio da Pasquale » gio set 19, 2019 6:01 pm

Penso che ci sarebbe da lavorare col modulo 7, come ad esempio qui di seguito:

PRINT "Inserisci quante cifre ti pare di ogni tipo,"
PRINT "compatibilmente con i limiti del Decimal Basic"
PRINT
PRINT " -> ";
INPUT PROMPT "":n$
PRINT
FOR m=1 TO 9
LET a$=n$&STR$(m)
LET b$=STR$(m)&n$
LET a=VAL(a$)
LET b=VAL(b$)
IF MOD(a,7)=0 THEN PRINT n$;" -> ";a$
IF MOD(b,7)=0 THEN PRINT n$;" -> ";b$
NEXT M

END
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » ven set 20, 2019 8:13 am

Pasquale, inserisco il tuo codice in uno spazio più appropriato, che non utilizzi il simbolo "$" per qualcos'altro.

Codice: Seleziona tutto

PRINT "Inserisci quante cifre ti pare di ogni tipo,"
PRINT "compatibilmente con i limiti del Decimal Basic"
PRINT
PRINT " -> ";
INPUT PROMPT "":n$
PRINT
FOR m=1 TO 9
   LET a$=n$&STR$(m)
   LET b$=STR$(m)&n$
   LET a=VAL(a$)
   LET b=VAL(b$)
   IF MOD(a,7)=0 THEN PRINT n$;" -> ";a$
   IF MOD(b,7)=0 THEN PRINT n$;" -> ";b$
NEXT M
END
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Pasquale
Livello 11
Livello 11
Messaggi: 2364
Iscritto il: mer mag 25, 2005 1:14 am

Re: Fra i multipli di 7.

Messaggio da Pasquale » dom set 22, 2019 2:07 am

Aggiungo altra routine più aderente a quanto richiesto, con calcolo della 8^ cifra da aggiungere a destra:

Codice: Seleziona tutto

INPUT PROMPT "inserisci 7 cifre consecutive (crescenti o decrescenti) -> ":n

PRINT
PRINT n;" -> ";
FOR x=1 TO 7
   LET a=x*10^7+n 
   IF MOD(a,7)=0 THEN  
      PRINT STR$(x);STR$(n)      
   END IF
NEXT X

PRINT n;" ->";
LET n=10*n
LET a=MOD(n,7)
PRINT n+7-a

END
Ultima modifica di Pasquale il mer set 25, 2019 9:29 pm, modificato 2 volte in totale.
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1006
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Fra i multipli di 7.

Messaggio da Gianfranco » dom set 22, 2019 7:41 pm

Bruno, non so se intendi questo, mi sembra troppo facile:
a) Se a un multiplo di 7 si "aggiunge" a uno o all'altro estremo la cifra 7, si ottiene un multiplo di 7.
b) al terzo tentativo con cifre consecutive trovo che 3456789 è divisibile per 7 quindi è il numero cercato.

Comunque, indagando su questo problema, mi è venuta la seguente congettura:

"Esistono infinite potenze di 7 tali che spostando la loro ultima cifra al primo posto, si ottiene un mutiplo di 7."

Per esempio:
7^5=16807
71680 MOD 7= 0
Pace e bene a tutti.
Gianfranco

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » lun set 23, 2019 8:06 am

Gianfranco, ok, ma... c'è solo quello? Come lo dimostriamo?

Il testo non dice, per esempio, che il numero iniziale sia un multiplo di 7 e nemmeno che le cifre siano solo in ordine crescente.
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » lun set 23, 2019 8:13 am

Pasquale, per riportare il codice senza problemi dovresti utilizzare "code", il pulsante "</>", non "quote".
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » lun set 23, 2019 10:15 am

Gianfranco ha scritto:
dom set 22, 2019 7:41 pm
"Esistono infinite potenze di 7 tali che spostando la loro ultima cifra al primo posto, si ottiene un mutiplo di 7."

La tua congettura può senz'altro essere confermata e prendo lo spunto dal tuo particolare esempio :D

Abbiamo infinite potenze di 7 che terminano con 7 (sono quelle il cui esponente è di tipo 4·k+1). Questo significa che, eliminando l'ultima cifra, si ottiene un multiplo di 7 e, scrivendo 7 all'inizio, si ottiene ancora un multiplo di 7.
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 1006
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Fra i multipli di 7.

Messaggio da Gianfranco » lun set 23, 2019 4:29 pm

Ciao Bruno, ero appena tornato da una breve vacanza e ho risposto frettolosamente la prima soluzione che ho trovato, anche se limitata.
In realtà avevo cercato un metodo generale e facile per trovare numeri multipli di 7 tali che spostando la loro ultima cifra al primo posto si ottenessero ancora multipli di 7.
Bruno ha scritto:
lun set 23, 2019 8:06 am
Gianfranco, ok, ma... c'è solo quello? Come lo dimostriamo?
Il testo non dice, per esempio, che il numero iniziale sia un multiplo di 7 e nemmeno che le cifre siano solo in ordine crescente.
Mediterò più profondamente.
Grazie Pasquale per i programmi!
Pace e bene a tutti.
Gianfranco

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » mar set 24, 2019 8:25 am

Gianfranco ha scritto:
lun set 23, 2019 4:29 pm
Mediterò più profondamente.
Lo so :D


Chiarisco meglio ciò che ieri intendevo dire a Pasquale.
Utilizzare "code" e non "quote" per i codici evita risultati come questo:

Allert.jpg
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » mar set 24, 2019 3:50 pm

Gianfranco ha scritto:
lun set 23, 2019 4:29 pm
In realtà avevo cercato un metodo generale e facile per trovare numeri multipli di 7 tali che spostando la loro ultima cifra al primo posto si ottenessero ancora multipli di 7.
Penso, Gianfranco, che si possano inventare diversi modi per scrivere dei multipli di 7 con la proprietà che indichi.
Uno svelto e abbastanza semplice è questo, evitando 7 come cifra turista.

(Anche se si tratta di un caso chiaramente particolare, come esempio mi sembra carino.)

Ragiono al contrario.
Osservo che i numeri del tipo 917, 9107, 91007, 910007, 9100007, ... sono tutti divisibili per 7.
Fra questi, come posso scegliere quelli che rimangono divisibili per 7 spostando la prima cifra (cioè 9) al posto delle unità?
Con una calcolatrice mi accorgo che 100079, 100000000079 e 100000000000000079 rispondono alla richiesta.
Ogni volta aggiungo sei zeri.

Ma è così all'infinito?
Certo :D

I numeri con quell'aspetto possono essere tradotti in formula anche a mente: $\,10^{6\cdot n+5}+79$, dove $\,n \ge 0$.
Posso dimostrare facilmente che $\,10^{6\cdot n+5} \equiv 5 \,(mod \, 7)$, e pertanto: $\,10^{6\cdot n+5}+79 \equiv 84 \equiv 0 \, (mod \, 7)$.
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Pasquale
Livello 11
Livello 11
Messaggi: 2364
Iscritto il: mer mag 25, 2005 1:14 am

Re: Fra i multipli di 7.

Messaggio da Pasquale » mer set 25, 2019 9:33 pm

OK Bruno, grazie. ho corretto Code in luogo di Quote.
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Bruno
Livello 8
Livello 8
Messaggi: 1082
Iscritto il: lun nov 21, 2005 6:07 pm
Località: Bologna

Re: Fra i multipli di 7.

Messaggio da Bruno » ven set 27, 2019 3:58 pm

Sì, così è meglio :wink:
Invisibile un vento
l'ha apena sfioragia
sospension d'un momento;
e la bola iridessente gera 'ndagia.
(Biagio Marin)

Rispondi