Finale CIGM 2015 - Divisione di un campo

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 947
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Finale CIGM 2015 - Divisione di un campo

Messaggio da Gianfranco » mar lug 07, 2015 9:48 am

Nando possiede un campo quasi quadrato, ma non proprio quadrato: le sue dimensioni (espresse da numeri interi di decametri) differiscono esattamente per un decametro. Intenzionato a preparare la sua successione, Nando divide il campo in tre parti triangolari (come vedete in figura): le misure dei lati dei triangoli sono espresse da numeri interi di decametri e le loro aree sono diverse tra loro.
Qual è al minimo, in dam^2, l’area del campo di Nando?
campo_erone.png
campo_erone.png (10.33 KiB) Visto 1802 volte
Questo problema all'inizio mi sembrava facile, poi mi sono perso in un mare di variabili intere e proprietà dei triangoli eroniani (compresi quelli rettangoli).
Alla fine l'ho risolto (a mano) grazie alla sequenza OEIS - A056137 (http://oeis.org/A056137).
Sono però rimasto con la curiosità: esiste un metodo elementare per risolverlo?

---
Buone vacanze a chi è in vacanza!
Pace e bene a tutti.
Gianfranco

delfo52
Livello 9
Livello 9
Messaggi: 1378
Iscritto il: mer mag 25, 2005 3:19 pm
Località: bologna

Re: Finale CIGM 2015 - Divisione di un campo

Messaggio da delfo52 » mar lug 07, 2015 11:15 am

ma...è rettangolo? o può essere trapezio o trapezioide ?
Enrico

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 947
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Finale CIGM 2015 - Divisione di un campo

Messaggio da Gianfranco » mar lug 07, 2015 12:49 pm

All'inizio il dubbio era venuto anche a me, ma poi ho dato per buono che il campo sia un rettangolo, altrimenti non avrebbe molto senso affermare e ribadire che è un quasi-quadrato.
Pace e bene a tutti.
Gianfranco

delfo52
Livello 9
Livello 9
Messaggi: 1378
Iscritto il: mer mag 25, 2005 3:19 pm
Località: bologna

Re: Finale CIGM 2015 - Divisione di un campo

Messaggio da delfo52 » mar lug 07, 2015 7:27 pm

comincio a metter giù due ragionamenti.
i due triangoli di sinistra sono rettangoli. Se le misure devono essere tutti numeri interi, servono due terne pitagoriche differenti ma che hanno il cateto maggiore uguale. E la somma dei due cateti minori deve eccedere di una unità il valore del cateto maggiore.
A questo punto si scorre la lista delle terne pitagoriche (da qualche parte esiste certamente) e si cerca la prima coppia che corrisponde alle specifiche richieste.
SE&O
il fatto che siano decametri invece che Amstrong o parsec, è ininfluente. Anche se , trattandosi di terreni agricoli, ragionevole.
A quando problemi di questo tipo ambientati nel mondo dei microchip e delle nanotecnologie, così da poter usare i deca-Amstrong ...
Enrico

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 947
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Finale CIGM 2015 - Divisione di un campo

Messaggio da Gianfranco » mer lug 08, 2015 6:43 am

OK, per abbreviare notevolmente la ricerca combinatoria (senza usare il computer) è utilissima la sequenza a cui accennavo.
---
Number of ways in which n can be the longer leg (middle side) of an integer sided right angled triangle.
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0,...
---
In pratica, per ogni lunghezza intera, la sequenza dice quanti sono i triangoli che hanno il cateto maggiore di quella data lunghezza.
Le prime due lunghezze a cui corrispondono 2 o più triangoli sono 12 e 24.
Mentalmente si trova che:
a) il cateto maggiore 12 appartiene alle terne: 12, 5, 13 e 12, 9, 15 (derivata da 3, 4, 5) - NON ACCETTABILE
b) il cateto maggiore 24 appartiene alle terne: 24, 18, 30 (derivata da 3, 4, 5) e 24, 7, 25 (e una terza terna che non serve) - ACCETTABILE
Da ciò risulta che a = 24.
---
Esiste un metodo che, usando pochi calcoli e le proprietà delle figure, permetta di arrivare alla soluzione?
Pace e bene a tutti.
Gianfranco

Rispondi