Equazione

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
karl
Livello 4
Livello 4
Messaggi: 100
Iscritto il: gio mar 29, 2007 2:03 pm

Equazione

Messaggio da karl » mar nov 01, 2011 4:48 pm

Risolvere in R l'equazione seguente :
Immagine

franco
Livello 8
Livello 8
Messaggi: 977
Iscritto il: mar dic 12, 2006 12:57 pm
Località: Bèrghem (Sardegna)

Re: Equazione

Messaggio da franco » mar nov 01, 2011 9:05 pm

Vale anche tirare ad indovinare e poi scoprire di aver fatto centro al primo colpo? :D

ciao
Franco

ENGINEER
noun. (en-juh-neer)
someone who does precision guesswork based on unreliable data provided by those of questionable knowledge.
See also wizard, magician

fabtor
Livello 5
Livello 5
Messaggi: 226
Iscritto il: mar nov 17, 2009 3:59 pm

Re: Equazione

Messaggio da fabtor » mer nov 02, 2011 3:13 pm

Beh a lune di naso direi che la soluzione sia x=1 che se non ho sbagliato i conti è accettabile dentro il C.E. per le realtà delle radici cioè X>=1 con l'esclusione dell'intervallo compreso tra le soluzioni dell'equazione associata alla disequazione che da la realtà della seconda "grossa radice" a sx dell'uguale.
Ah, se i portieri avessero sulla maglia: |e^{-i\pi}|...

Pongo y = x^{2} quindi y=\frac {x^{2}}{pongo}
[tratto da un compito in classe di uno studente di prima superiore]

Il vero gnomone aureo: http://thumbs.dreamstime.com/z/gnomo-de ... 526933.jpg

vittorio
Livello 3
Livello 3
Messaggi: 63
Iscritto il: lun ago 20, 2007 8:29 am
Località: Ravenna

Re: Equazione

Messaggio da vittorio » gio nov 03, 2011 9:43 am

Guardando l'equazione, dai coefficienti al primo membro ho notato che
25+9x+30\sqr{x}=(3\sqr{x}+5)^2 e 16+9x+30\sqr{x-1}=(3\sqr{x-1}+5)^2
da cui l'equazione diviene
|3\sqr{x}+5)|-|3\sqr{x-1}+5|=\frac{3}{x\sqr{x}}.
Per la realtà delle radici deve essere x\ge 1 per cui entrambi i termini entro i valori asssoluti sono positivi e l'equazione diviene
\sqr{x}-\sqr{x-1}=\frac{1}{x\sqr{x}}.
Riducendo e quadrando si perviene a
x^3-2x^2+1=0
che ammette le soluzioni
x=1 x=\frac{1+\sqr{5}}{2} x=\frac{1-\sqr{5}}{2}
Dalla verifica, indispensabile per equazioni irrazionali, si ricava che solo i primi due valori sono accettabili.
Vittorio

karl
Livello 4
Livello 4
Messaggi: 100
Iscritto il: gio mar 29, 2007 2:03 pm

Re: Equazione

Messaggio da karl » gio nov 03, 2011 4:02 pm

Ottima soluzione .Io mi ero affidato alla formula del radicale quadratico doppio,ma così è più veloce.Quanto alla verifica diretta ,credo che ci si possa limitare alle prime due radici dato che la terza è negativa e non soddisfa la condizione x>=1
Ciao

Rispondi