Divisori alla pari

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
David
Livello 4
Livello 4
Messaggi: 189
Iscritto il: mar ago 04, 2009 10:49 am

Divisori alla pari

Messaggio da David » ven gen 06, 2012 2:04 pm

Tutti sappiamo che qualsiasi numero naturale potrebbe essere inteso come prodotto di fattori primi,ognuno dei quali viene considerato colla propria molteplicità (il valore del suo esponente)

Esempio per il numero 360 abbiamo:
360=2^3X3^2X5
Quindi 360 è il prodotto di 3 fattori primi differenti di cui uno con molteplicità 3,uno con molteplicità 2,uno con molteplicità 1
Se ora qualcuno ci chiedesse qual'è la quantità di divisori di 360 che sia esprimibile come prodotto di 2 fattori primi differenti di cui uno con molteplicità 3 e uno con molteplicità 1,sapremmo rispondere?
Saremmo fiduciosi nel dare la risposta corretta 2, ossia 24 e 40,dato che: 24=2^3X3 \ e\  40=2^3X5

Alla luce di tali considerazioni ammiccanti ma non frivole,so anche scrivere un numero tale che la quantità di suoi divisori esprimibili come il prodotto di 4 primi differenti di cui uno con molteplicità 3 e tre con molteplicità1 è la stessa quantità di divisori esprimibili come il prodotto di 4 primi differenti di cui 2 con molteplicità 2 e 2 con molteplicità 1.

Se detta quantità di divisori uguale per i 2 casi risulta essere pari,qual'è il più piccolo numero intero che mi accingo a scrivere?

Pasquale
Livello 11
Livello 11
Messaggi: 2355
Iscritto il: mer mag 25, 2005 1:14 am

Re: Divisori alla pari

Messaggio da Pasquale » mar gen 10, 2012 2:55 am

Premesso che la mia interpretazione di quanto detto da David:
Se ora qualcuno ci chiedesse qual'è la quantità di divisori di 360 che sia esprimibile come prodotto di 2 fattori primi differenti di cui uno con molteplicità 3 e uno con molteplicità 1,sapremmo rispondere?
Saremmo fiduciosi nel dare la risposta corretta 2, ossia 24 e 40,dato che: 24=2^3X3 \ e\  40=2^3X5
è la seguente:
Se ora qualcuno ci chiedesse qual'è la quantità di divisori di 960, ciascuno esprimibile come prodotto di 2 fattori primi differenti, di cui uno con molteplicità 3 e uno con molteplicità 1....
la mia risposta è:

\text 1.587.600 =  840 x 1890 = 2^3\cdot 3\cdot 5\cdot 7 x 3^3\cdot 2\cdot 5\cdot 7 = 1260 x 1260 = 2^2\cdot 3^2\cdot 5\cdot 7 x 2^2\cdot 3^2\cdot 5\cdot 7

Ritengo sia il più piccolo, perché le potenze sono applicate ai divisori più piccoli (2 e 3), mentre gli altri divisori con esponente 1 sono i primi a seguire in ordine di grandezza (5 e 7).
Il quesito si risolve a mente, una volta compreso che con due divisori alla quarta potenza, distribuiti su posizioni pari, si possono generare quelli di seconda e di terza, lasciando inalterati gli altri, che sono solo di prima (5 e 7).
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

David
Livello 4
Livello 4
Messaggi: 189
Iscritto il: mar ago 04, 2009 10:49 am

Re: Divisori alla pari

Messaggio da David » gio gen 12, 2012 6:44 pm

Ciao Pasquale,a volte gli esempi sono illuminanti più di 1000 parole.

Se non ci fosse la condizione che la quantità di detti divisori debba essere pari,il numero da me scritto sarebbe:
2520,dato che avrebbe 1 divisore di un tipo e 1 divisore dell'altro:

D_3_1= {2^3\cdot3\cdot5\cdot7} ;D_2_2={2^2\cdot3^2\cdot5\cdot7}

Ora qual'è il più piccolo numero N che ha 2n dividori del primo tipo e 2n divisori del secondo tipo?

esempio si verifichi come il più piccolo numero che ha 3 divisori del primo tipo e 3 del secondo è 189000
dato che 189000=2^3\cdot3^3\cdot5^3\cdot7

e i 3 divisori del primo tipo sono: 840,1890,5250
mentre i 3 del secondo tipo sono:1260,2100,3150

Rispondi