Aritmetica poligonale (1)

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
franco
Livello 8
Livello 8
Messaggi: 965
Iscritto il: mar dic 12, 2006 12:57 pm
Località: Bèrghem (Sardegna)

Aritmetica poligonale (1)

Messaggio da franco » sab ott 29, 2016 5:02 pm

Le dimensioni dei lati di un quadrilatero sono numeri interi tali che ciascuno di loro è un divisore della somma degli altri tre.
Dimostrare che almeno due dei lati del quadrilatero sono uguali.

A486. Les dimensions des côtés d’un quadrilatère (non aplati) sont des nombres entiers tels que l’une quelconque d’entre elles divise la somme des trois autres. Démontrer que deux côtés au moins de ce quadrilatère sont égaux.
Franco

ENGINEER
noun. (en-juh-neer)
someone who does precision guesswork based on unreliable data provided by those of questionable knowledge.
See also wizard, magician

Pasquale
Livello 11
Livello 11
Messaggi: 2355
Iscritto il: mer mag 25, 2005 1:14 am

Re: Aritmetica poligonale (1)

Messaggio da Pasquale » mer set 11, 2019 7:34 pm

Al momento mi riesce solo di dimostrare che nel caso in cui i lati abbiano dimensioni ad esempio del tipo 18, 3, 63, 42, il quadrilatero non è un quadrilatero, pur essendo ogni lato divisore degli altri tre. :lol:
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

franco
Livello 8
Livello 8
Messaggi: 965
Iscritto il: mar dic 12, 2006 12:57 pm
Località: Bèrghem (Sardegna)

Re: Aritmetica poligonale (1)

Messaggio da franco » ven set 13, 2019 9:52 am

Mi ero completamente dimenticato di aver postato questo problema quasi 3 anni fa :)

Se volete, vado a recuperare e postare la soluzione che sicuramente gli amici Francesi hanno caricato sul sito.
Io avevo desistito molto rapidamente. (Avevo proposto il problema ma non è di quelli che più mi intrigano ...)
Franco

ENGINEER
noun. (en-juh-neer)
someone who does precision guesswork based on unreliable data provided by those of questionable knowledge.
See also wizard, magician

Pasquale
Livello 11
Livello 11
Messaggi: 2355
Iscritto il: mer mag 25, 2005 1:14 am

Re: Aritmetica poligonale (1)

Messaggio da Pasquale » sab set 14, 2019 1:01 am

A suo tempo ci avevo perso un po' tempo, senza concludere altro che, se un lato è maggiore o uguale alla somma degli altri tre, il quadrilatero non esiste.
Quindi, se un lato è divisore della somma degli altri tre, escludendo il caso dell'uguaglianza, evidentemente ogni lato deve essere minore della suddetta somma (facile deduzione).
Il caso dei lati divisori degli altri tre, considerata la suddetta esclusione, è un caso particolare, come definito dal testo del problema, che una semplice routine conferma, nell'ambito dei valori che gli si dà da esaminare, ma resta da dimostrare la ragione dell'eguaglianza enunciata. Penso che il problema diventi di natura matematica e qui mi fermai a suo tempo: poi la questione finì nel dimenticatoio.
Questi giorni mi è capitato casualmente di rivedere quel testo, ma egualmente non mi è riuscito di impostare un valido criterio di impostazione del problema, salvo qualche poco utile equazione diofantea.
Resta dunque quel pizzico di curiosità, ma se il problema non viene affrontato da almeno due o tre basecinquini, non vale la pena che tu debba disturbarti a perdere del tempo in nuove ricerche.
Comunque, grazie per la disponibilità.
Ultima modifica di Pasquale il sab set 14, 2019 6:16 pm, modificato 1 volta in totale.
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 984
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Aritmetica poligonale (1)

Messaggio da Gianfranco » sab set 14, 2019 7:53 am

Grazie Franco e Pasquale, ho messo in incubazione questo problema nel mio inconscio.
Franco, per ora non postare la soluzione del sito francese.
Pace e bene a tutti.
Gianfranco

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 984
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: Aritmetica poligonale (1)

Messaggio da Gianfranco » mar set 17, 2019 1:36 pm

Il problema giustamente si dice di "aritmetica" perché si risolve con ragionamenti numerici a parte uno spunto geometrico iniziale.
1) Se ogni lato divide la somma degli altri tre allora ogni lato divide anche il perimetro.
2) Per la disuguaglianza poligonale, il lato più grande può essere al massimo 1/3 del perimetro.
3) Supponiamo per assurdo che i quattro lati siano tutti diversi.
4) Allora le loro misure MASSIME possono essere 1/3, 1/4, 1/5, 1/6 del perimetro ma la loro somma fa 19/20, meno del perimetro.
5) Quindi è impossibile che siano tutti diversi.
6) Con due lati uguali si possono fornire degli esempi.

A partire dal punto 1) si può dire che il problema è equivalente a trovare 4 frazioni unitarie (egiziane) la cui somma sia 1, per esempio:
1 = 1/2 + 1/4 + 1/6 + 1/12
Purtroppo la soluzione non è accettabile perché c'è la frazione 1/2.
Se il quadrilatero ha un lato che è metà del perimetro allora è un quadrilatero "piatto".
Pace e bene a tutti.
Gianfranco

Rispondi