"Ammazziamo" il tempo con ...l'orologio!

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

"Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » ven mar 04, 2016 11:08 pm

Il tempo lo si può sprecare ("ammazzare") in mille modi (ne sanno qualcosa gli oziosi...):
Con le carte, con i dadi, ecc. e anche con l'orologio, ossia con il segnatempo per eccellenza.

Ecco un giochino,(che sicuramente molti conoscono) , per passare ("ammazzare") un po' di tempo e fare "ammattire"
quattro amici al bar utilizzando l'orologio da polso.

Invita un amico a pensare una qualsiasi delle dodici ore segnate sul quadrante
(ma perché ci ostiniamo a chiamarlo "quadrante" quando in realtà e "tondo" !?!) dell'orologio da polso.
Dopo aver pensato il numero corrispondente all'ora scelta, deve aggiungere ad essa 1 ad ogni colpo che
tu batterai sul quadrante dell’orologio.

Al 20° colpo dovrà dirti “basta”.

Esempio: Se l'amico ha pensato la terza ora "3", quando tu (che conduci il gioco), batti,con un lapis,una
penna, un dito o con ciò che ti aggrada meglio (senza rompere il vetro dell'orologio...) un colpo
su una qualsiasi delle 12 cifre, dovrà mentalmente contare 4 (ossia 3+1).
Al secondo colpo contera 5 e così via.

Giunti al 20° colpo dovrà gridare STOP.

Tu smetterai di battere sull'orologio.
Si verifica a questo punto che la tua ventesima battuta cade
sull'ora pensata dall'amico... che ti guarda incredulo a bocca aperta!

Il giochino, può sembrare banale... ma... mica tanto, se... ad interessarsene è stato...(omissis). Ciao.peppe
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » mer mar 09, 2016 10:29 pm

Possibile che nessuno possiede il libro:
Matematica dilettevole e curiosa-Italo Ghersi- Hoepli ?

Il quesito si trova a pag.22,visualizzabile qui:

https://books.google.it/books?id=5FZbhd ... &q&f=false

Però, secondo me, il gioco non viene spiegato con chiarezza. Ciao
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Ivana
Livello 7
Livello 7
Messaggi: 794
Iscritto il: dom nov 20, 2005 10:47 am
Contatta:

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da Ivana » gio mar 10, 2016 10:55 am

Io ho il libro, dove c'è il seguente esempio:
se l'ora pensata è la VIII, la persona che l'ha pensata deve indicarne un'altra, es. V e contare 8 - 9 ecc. fino a V + 12 = 17, toccando successivamente le ore V - IV ecc. fino a 17 arrivando appunto a VIII
Immagine
"L'essenza della matematica è la libertà" (Georg Cantor)

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » gio mar 10, 2016 12:39 pm

Anche sulla mia edizione del libro, precisamente la V^.

Però, per conto mio, non è una risposta chiara.
E anche la spiegazione algebrica non aiuta molto. Ne convieni?

Conosco invece una spiegazione alla "femminile", abbastanza chiara.
Lo scopo di questo post, era quello di indagare se qualcuno di voi la conosce.

Grazie per la risposta. peppe
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Ivana
Livello 7
Livello 7
Messaggi: 794
Iscritto il: dom nov 20, 2005 10:47 am
Contatta:

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da Ivana » gio mar 10, 2016 5:34 pm

Sì, sono d'accordo: la spiegazione algebrica, per quanto riguarda il "paragrafo" "II." lascia a desiderare; il "paragrafo" "I." risulta, invece, chiaro.
Immagine
"L'essenza della matematica è la libertà" (Georg Cantor)

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » ven mar 11, 2016 10:41 am

Ho scritto erroneamente:
"Si verifica a questo punto che la tua ventesima battuta cade
sull'ora pensata dall'amico... che ti guarda incredulo a bocca aperta!"

anziché:
Si verifica a questo punto che la tua ultima battuta cade
sull'ora pensata dall'amico... che ti guarda incredulo a bocca aperta!

Spiegazione:
Il trucco consiste nel fatto che il conduttore del gioco, i primi SETTE colpi, li
batte a casaccio sul quadrante, toccando numeri a caso per confondere le idee dello spettatore.

Dall'OTTAVO colpo le cose cambiano.
Infatti l'8° colpo si deve battere sul 12.
Il 9° sull'11;il 10° sull'ora 10; l'11° sul 9 e così via in senso antiorario.

Nell'esempio proposto in cuio ,lo spettatore pensa la 3^ ora,quando il conduttore batte il 17° colpo,
quindi quando il conto che fa mentalmente lo spettatore giunge a 20,(17+3=20),la
battuta del conduttore cade sull'ora 3, che è quella pensata.

Un esempio semplicissimo. Supponiamo che lo spettatore pensi la 12^ ora.
Occorrono 8 colpi per raggiungere 20 (12+8=20);
Il conduttore dopo i primi sette colpi a casaccio,batte l'8° sul 12 che è
l'ora pensa.
Non so se sono stato chiaro.
Ovviamente si può variare la cifra finale. Anziché 20 si fa contare fino a 19.
In tal caso, la battuta sull'ora 12 sarà la 7^.

Mi piacerebbe però che qualcuno mi spiegasse i calcoli algebri fatti dal Ghersi.
Ciao.
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Ivana
Livello 7
Livello 7
Messaggi: 794
Iscritto il: dom nov 20, 2005 10:47 am
Contatta:

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da Ivana » dom mar 20, 2016 9:02 am

Il mio carissimo amico Giorgio Pietrocola mi ha spiegato, in modo che a me sembra molto chiaro, che, algebricamente
“partendo da una certa ora b e contando in senso antiorario,
l'ora contata alla k-esima battuta è correttamente espressa dalla funzione
g(b, \;k)=b-k+1 \;mod12

infatti retrocontando da 7 il primo conteggio dà g(7, \;1)=7
e successivamente
g(7, \;2)=6
g(7, \;3)=5

g(7, \;8)=0=12
etc. etc.

ne discende che dopo b+12-a+1 conteggi
(ottenibili sia contando 1, \; 2\;...fino a b+12+1-a sia , più furbescamente, contanto iniziando da a+1 fino a b+12+1 )
ci si trova nuovamente e necessariamente ancora in a
come facilmente calcolabile con la funzione introdotta:

g(b, \; b+12+1-a)=b-(b+12+1-a) +1=b-b-12-1+a+1=a  \; mod12
Immagine
"L'essenza della matematica è la libertà" (Georg Cantor)

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » dom mar 20, 2016 2:47 pm

Ivana, ti ringrazio per l'attenzione e per l'impegno.
Sai bene che sono una persona sincera (quasi ingenua ...
come qualcuno a volte mi fa notare...), non sarei perciò degno
della tua stima se ti dicessi che ho capito. :( :(

Ci rifletterò ancora ... sperando in un flash che possa illuminare i miei
poveri neuroni. Se ci riesco ti farò sapere.
Ancora grazie. peppe
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » lun mar 21, 2016 5:50 pm

Ancora buio... :evil:
Ma, a proposito di orologi, questo mi è chiaro:

"Una pulce si trova sul numero 12 del quadrante di un orologio. Sceglie un
numero naturale n compreso tra 1 e 12, estremi inclusi, e comincia a fare salti di n numeri
sul quadrante, in senso orario (se ad esempio n = 3, dopo il primo salto è sul 3, dopo il secondo è
sul 6 e così via). Dopo 12 salti, per la prima volta si ritrova sul numero 12 del quadrante. In quanti modi
distinti può aver scelto n?


Cosa accomuna i numeri 376 e 625?

Comunque si prenda un numero naturale n, il numero $(n + 2)(n + 3)(2n + 5)$ è divisibile per 6

Ho fatto alcune prove e funziona! Però lo sviluppo algebrico di:

$(n+2)(n+3)(2n+5)$

mi conduce a:

$2n^3 + 15n^2 + 37n +30$

Se sostituisco il più piccolo valore di n , ossia n = 1 ottengo 294 multiplo di 6. Quindi ci siamo.

Però a occhio, (e con gli occhiali non appannati...) dallo sviluppo finale:
$2n^3 + 15n^2 + 37n +30$

NON riesco a scorgere la divisibilità per 6. In particolare mi dà fastidio l'addendo $37n$ . Cosa mi sfugge?
Saluti. peppe
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

panurgo
Livello 8
Livello 8
Messaggi: 1162
Iscritto il: sab nov 19, 2005 3:45 pm
Località: Padova

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da panurgo » lun mar 21, 2016 11:14 pm

Ogni numero naturale può essere scritto nella forma $n\,=\,6k\,+\,r$ con $r\,\in\,\left\{0,1,2,3,4,5\right\}$ e

$\begin{array}{|l|l|l|l|,C}
\hline
r & n+2 & n+3 & 2n + 5 & \left(n+2\right) \left(n+3\right) \left(2n+5\right)\\
\hline
0 & 6k+2=2\left(3k+1\right) & 6k+3=3\left(2k+1\right) & 12k+5 & 2 \times 3 \times P\left(k\right) \\
1 & 6k+3=3\left(2k+1\right) & 6k+4=2\left(3k+2\right) & 12k+7 & 3 \times 2 \times P\left(k\right) \\
2 & 6k+4=2\left(3k+2\right) & 6k+5 & 12k+9=3\left(4k+3\right) & 2 \times 3 \times P\left(k\right)\\
3 & 6k+5 & 6k+6=6\left(k+1\right) & 12k+11 & 6 \times P\left(k\right) \\
4 & 6k+6=6\left(k+1\right) & 6k+7 & 12k+13 & 6 \times P\left(k\right) \\
5 & 6k+7 & 6k+8=2\left(3k+4\right) & 12k+15=3\left(4k+5\right) & 2 \times 3 \times P\left(k\right) \\
\hline\end{array}$

In ogni caso è sempre possibile trovare o un fattore $2$ e un fattore $3$ o un fattore $6$
il panurgo

Principio di Relatività: {\bb m} \not \right {\bb M} \ \Longleftrightarrow \ {\bb M} \not \right {\bb m}
"Se la montagna non va a Maometto, Maometto NON va alla montagna"

Ivana
Livello 7
Livello 7
Messaggi: 794
Iscritto il: dom nov 20, 2005 10:47 am
Contatta:

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da Ivana » mar mar 22, 2016 6:48 am

Giuseppe, hai provato a effettuare verifiche "empiriche" di quando detto da Giorgio, considerando, naturalmente, a=numero pensato e $b$=numero su cui inizia a battere il "battitore"?

Riguardo al quesito le ultime tre cifre di un quadrato di un numero intero che termina con 625 sono, proprio, 625:
le ultime tre cifre di un quadrato di un numero intero che termina con 376 sono proprio 376
Lascio ad altri le dimostrazioni ... :D
Comunque, inizio a impostarne una: (1000x + 376)^2 :D
Immagine
"L'essenza della matematica è la libertà" (Georg Cantor)

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » mar mar 22, 2016 9:12 am

panurgo, grazie per la bella dimostrazione che non conoscevo.
Ora è chiaro.
Certo che se ne imparano di belle cose bazzicando in questo forum.
E a proposito d'imparare, mi sono copiato il codice LaTex da te usato per
costruire la tabella, così come ho fatto in altre occasioni in cui
hai scritto delle formule impossibili!!
Un conto è la teoria, un conto è la pratica (che ammazza la grammatica...). La mia infarinatura sul LaTex è cresciuta grazie anche ai tuoi esempi.

Ivana, io non capisco il significato di questa formula:

g(b, \;k)=b-k+1 \;mod12

Le parentesi tonde, alcuni le usano per indicare il MCD tra due o più numeri.
In questo caso g dovrebbe indicare il MCD tra (b,k)... ma che ci azzecca?!

Le prove empiriche non le ho fatte.
O.K. per i due numeri.

Rimane la pulce "saltarina"... :D

Grazie ancora. Saluti.peppe
Ultima modifica di peppe il mar mar 22, 2016 12:30 pm, modificato 1 volta in totale.
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Ivana
Livello 7
Livello 7
Messaggi: 794
Iscritto il: dom nov 20, 2005 10:47 am
Contatta:

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da Ivana » mar mar 22, 2016 11:06 am

Giuseppe,
provo a spiegarti, in modo che credo molto, molto semplice, ciò che ho capito io:
si tratta di aritmetica modulare e g(b,K) è una funzione. Non c'entra assolutamente il MCD!
Facciamo alcuni esempi:
1) g(7, 1)
7 è il numero di partenza sull'orologio, numero su cui viene fatta una battuta; si rimane sul 7

2) g(7, 5)
7 è il numero di partenza sull'orologio, numero su cui viene fatta la prima battuta; alla quinta battuta si arriva sul 3

Insomma:
1) b-k+1 = 7-1+1 = 7 mod12
2) 7-5+1 = 3 mod 12

Aggiungo che nell'aritmetica dell'orologio 12 = 0
quindi:
g(7,8)=0=12
b-k+1 = 7-8+1 = 0 = 12 mod12
Immagine
"L'essenza della matematica è la libertà" (Georg Cantor)

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da peppe » mar mar 22, 2016 12:32 pm

Ho capito la giustificazione algebrica. Grazie e scusa il fastidio. peppe
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Ivana
Livello 7
Livello 7
Messaggi: 794
Iscritto il: dom nov 20, 2005 10:47 am
Contatta:

Re: "Ammazziamo" il tempo con ...l'orologio!

Messaggio da Ivana » mar mar 22, 2016 1:27 pm

Nessun "fastidio", Giuseppe!
Credo che, invecchiando, (parlo soprattutto per me e penso anche per te!) la matematica diventi per noi sempre più un piacevolissimo divertimento.
Personalmente ho sempre adorato (quindi anche quando ero bambina!) le "verifiche empiriche"; quando sono diventata insegnante mi preoccupavo che gli alunni capissero come si giunge a una determinata "formula", ma ricordo che quando io ero piccola (e amavo la matematica!) mi dilettavo con le "verifiche" e, ora, invecchiando , trovo divertimento nel "rimbambinire" ... :D
A te non piaccono (o non sono mai piaciute?) le "verifiche"?
Immagine
"L'essenza della matematica è la libertà" (Georg Cantor)

Rispondi