Altra funzionale

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
karl
Livello 4
Livello 4
Messaggi: 100
Iscritto il: gio mar 29, 2007 2:03 pm

Altra funzionale

Messaggio da karl » lun apr 30, 2007 8:22 pm

Determinare la funzione f:R-{1}->R tale sia:
x^2f(1+x)+xf(1-x)=x^2+5x-4
karl

mathmum
Livello 5
Livello 5
Messaggi: 337
Iscritto il: sab nov 19, 2005 5:39 pm
Località: World (Wide Web) - IT

Messaggio da mathmum » mar mag 01, 2007 11:39 am

Metodo "intuizione": :roll:

Poichè la funzione da trovare è definita su R-{1}->R, allora deve avere un "buchetto" in 1, quindi ho messo a denominatore di f(x) un (x-1).

A questo punto, visto che il trinomio a secondo membro è di 2° grado, ho posto a numeratore di f(x) un (ax+b).

In pratica, posto f(x)=\frac{ax+b}{x-1}, trovo che f(1+x)=\frac{a(1+x)+b}{x} e f(1-x)=\frac{a(1-x)+b}{-x}.

Sostituisco nell'equazione funzionale ed ottengo ax^2+(2a+b)x-a-b=x^2+5x-4.

Per il principio di identità dei polinomi deve essere necessariamente a=1, b=3, da cui f(x)=\frac{x+3}{x-1}

Che ne dici?
mathmum

...la vita è complessa: ha componenti reali ed immaginarie...

Pasquale
Livello 11
Livello 11
Messaggi: 2370
Iscritto il: mer mag 25, 2005 1:14 am

Messaggio da Pasquale » mer mag 02, 2007 12:24 am

Io dico che beddissimo fu!
_________________

\text {     }ciao Immagine ciao
E' la somma che fa il totale (Totò)

karl
Livello 4
Livello 4
Messaggi: 100
Iscritto il: gio mar 29, 2007 2:03 pm

Messaggio da karl » mer mag 02, 2007 1:44 pm

Concordo con Pasquale.Soluzione diretta e molto carina.
Approfitto per "rifilarvi" un quesito di cui non ho soluzioni.
Stabilire se il numero :
N=9753^{2468}+3579^{8642}+9357^{2468}+9573^{8642}
e' o no un quadrato perfetto.
karl
Ultima modifica di karl il mer mag 02, 2007 10:04 pm, modificato 1 volta in totale.

mathmum
Livello 5
Livello 5
Messaggi: 337
Iscritto il: sab nov 19, 2005 5:39 pm
Località: World (Wide Web) - IT

Messaggio da mathmum » mer mag 02, 2007 3:42 pm

troppo buoni!

Se non ci fosse stato scritto che la funzione era definita su R\1 non ci sarei arrivata neanche in 100 anni!

E adesso una considerazione sul numero gigante di Karl.
Sempre un po' a naso, direi.
Premessa: ogni quadrato perfetto termina per 0, 1, 4, 5, 6 oppure 9.
Guardo il primo Karl-addendo. Finisce per 3 ed è elevato a qualcosa che termina per 8. L'ultima cifra dell'elevamento a potenza quindi è quella di un 3^8, cioè un 1.
Ripeto la cosa per gli altri Karl-addendi, ed ottengo un 1, un 1 e un 9.

Sommo tutte le ultime cifre dei Karl-addendi: 1+1+1+9=12 quindi l'ultima cifra del Karl-numero è 2, quindi il suddetto non è un quadrato perfetto.

Spero di non avere sparato una bip!-ata!!!

ciao!
Ultima modifica di mathmum il mer mag 02, 2007 3:51 pm, modificato 1 volta in totale.
mathmum

...la vita è complessa: ha componenti reali ed immaginarie...

Br1
Livello 6
Livello 6
Messaggi: 465
Iscritto il: mer feb 21, 2007 5:53 pm
Località: Bologna

Messaggio da Br1 » mer mag 02, 2007 3:48 pm

mathmum ha scritto:Spero di non avere sparato una bip!-ata!!!
Assolutamente no, carissima Mathmum: quel numero
termina proprio con due :D
Sono giunto alla stessa conclusione e stavo postando
i miei superveloci calcoli, ma ho visto in tempo il tuo
intervento.

Volo!

Spero di poter riplanare presto da queste parti...
Bruno

Rispondi