1999

Il forum di Base5, dove è possibile postare problemi, quiz, indovinelli, rompicapo, enigmi e quant'altro riguardi la matematica ricreativa e oltre.

Moderatori: Gianfranco, Bruno

Rispondi
peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

1999

Messaggio da peppe » sab mar 12, 2016 12:20 am

1999^4+4
è multiplo di 3? È multiplo di 5?
Dimostrazione.
Ciao
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Info
Livello 5
Livello 5
Messaggi: 322
Iscritto il: lun nov 21, 2005 1:11 pm
Contatta:

Re: 1999

Messaggio da Info » sab mar 12, 2016 11:17 am

non e`difficile capire se e`multiplo di 3....
prendo 1998 che e`divisibile per 3
1999=1998+1\\1999^4=\(1998+1)^4=\(1998^2+2\cdot 1998+1\)^2

di sicuro mi dara`1 come resto della divisione per 3, essendo l'unico termine che non e`moltiplicato per 1998.
Sviluppando il quadrato tutti i termini sono moltiplicati almeno una volta per 1998 tranne 1 che sara`quindi il resto della divisione per 3.

aggiungendo 4, ottengo 2 come resto della divisione del risultato finale.

Con lo stesso ragionamento posso verificare il resto della divisione per 5,
prendo in questo caso 1995 che e`il numero divisibile piu`vicino
1999=1995+4\\1999^4=\(1995+4)^4=\(1995^2+2\cdot 1995\cdot 4+16\)^2

di sicuro mi dara`16 (quindi 1) come resto della divisione per 5, essendo l'unico termine che non e`moltiplicato per 1995.
Sviluppando il quadrato tutti i termini sono moltiplicati almeno una volta per 1995 tranne 16 che e`moltiplicato per se stesso dando 256 quindi 1 come resto della divisione per 5

aggiungendo 4, ottengo la dimostrazione che il risultato e`divisibile per 5
Fai sorridere il tuo HD diventando opensource oriented, scopri come

delfo52
Livello 9
Livello 9
Messaggi: 1378
Iscritto il: mer mag 25, 2005 3:19 pm
Località: bologna

Re: 1999

Messaggio da delfo52 » sab mar 12, 2016 11:52 am

la divisibilità per 5 è dimostrabile constatando che le potenze dei numeri che finiscono in 9, finiscono alternativamente in 1 e in 9. per cui xxx9 elevato ad una potenza pari finisce in 1. +4...il gioco è fatto
Enrico

Gianfranco
Supervisore del sito
Supervisore del sito
Messaggi: 947
Iscritto il: ven mag 20, 2005 8:51 pm
Località: Sestri Levante
Contatta:

Re: 1999

Messaggio da Gianfranco » sab mar 12, 2016 12:14 pm

Potenza dell'aritmetica modulare.

a) Calcoliamo in MODULO 3
1999  = 1 (mod 3)
4  = 1 (mod 3)
1999^4 = 1^4 = 1) (mod 3)
1999^4 + 4 = 1 + 1 = 2 (mod 3)
Perciò (1999^4 + 4) : 3 dà come resto 2

b) Calcoliamo in MODULO 5 (a modo mio)
1999  = -1 (mod 5)
4 = -1 (mod 5)
1999^4 = (-1)^4 = 1 (mod 5)
1999^4 + 4 = 1 -1 = 0 (mod 5)
Perciò (1999^4 + 4) : 5 dà come resto 0
Pace e bene a tutti.
Gianfranco

peppe
Livello 7
Livello 7
Messaggi: 840
Iscritto il: gio mag 26, 2005 1:41 pm
Località: Cirò Marina KR

Re: 1999

Messaggio da peppe » sab mar 12, 2016 12:48 pm

La matematica "approssimativa" è affascinante!
Ecco le soluzioni che conosco:

1)È multiplo di 5 in quanto $1999^4$ termina per 1; se ad esso sommiamo 4
il numero terminerà per 5 e quindi è divisibile per 5.
[questa è identica alla dimostrazione di Enrico]

2)Non è multiplo di 3.
Dimostrazione:
$1999^4$ non è multiplo di 3 e si può scrivere come 3x+1.
se indichiamo con a e b i due addendi, ossia:
a = 3x
b = 1

Il binomio (3x+1) elevato alla quarta potenza: $(a+b)^4$
si può scrivere (si pensi al triangolo di Tartaglia e Binomio di Newton)

$a^4+4a^3b+6a^2b^2+4ab^3+b^4$

I primi 4 termini contengono a (nel nostro caso 3x) e sono multipli di 3.
L'ultimo è 1; se ad esso aggiungiamo 4, otterremo 5 quindi
il numero non sarà multiplo di 3. E poiché termina con 5 sarà divisibile per 5.

Questa mi sembra analoga alla soluzione di Info.

Quella di Gianfranco con le congruenze, è un metodo ulteriore elegante
e sbrigativo che mi ricorda questo post:

http://www.base5forum.it/radice-digitale-t7882.html
Saluti.peppe
«Un uomo è come una frazione il cui numeratore è quello che è, e il cui denominatore quello che pensa di sé.
Più grande è il denominatore, minore la frazione.» Lev Nikolàevič Tolstòj(1828-1910).

Rispondi